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Abstract 

Compiler Design courses are a common component of most 
modem Computer Science undergraduate curricula. At the 
same time, however, compiler design has become a highly 
specialized topic, and it is not clear that a significant num- 
ber of Computer Science students will find themselves de- 
signing compilers professionally. This paper argues that the 
principles, techniques, and tools discussed in compiler de- 
sign courses are nevertheless applicable to a wide variety of 
situations that would generally not be considered to be com- 
piler design. Generalizing the content of compiler design 
courses to emphasize this broad applicability can make them 
more relevant to students. 

1 Introduction 
Compiler design courses are a common component of Com- 
puter Science undergraduate curricula at most universities. 
Students typically study a variety of topics about compiler 
design theory, such as LR(1) parsing or attribute grammars, 
and implement a compiler for some (smallish) subset of  a 
language such as C or Java. It seems unlikely, however, 
that typical computer science students will apply, in their 
day-to-day professional lives, the arcana of LR(1) parse ta- 
ble construction or graph-coloring-based register allocators. 
The vast majority of these students are unlikely to ever de- 
sign a compiler, in the conventional sense of  that term: i.e., 
something that generates machine code from a high-level 
program. My impression is that students are aware of this, 
consider compiler design to be less "relevant" to their tech- 
nical education than, say, courses on operating systems or 
networking, and thereby put correspondingly less time and 
effort into studying compiler design. 
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It turns out, however, that many of  the techniques and al- 
gorithrns used by compilers are actually much more broadly 
applicable than just for translating high-level programming 
languages to asembly or machine code. Emphasizing this 
aspect of compiler design--and illustrating it with a wide 
variety of examples during the course--can bring home to 
students that the material taught in a compiler design course 
in fact has a great deal of relevance to a variety of  compu- 
tational problems well outside what one typically thinks of 
as compilation problems. The idea is to consider compil- 
ers as just one instance of translators, broadly, from (almost) 
any arbitrary source language to (almost) any arbitrary tar- 
get language, rather than in the more narrowly defined tra- 
ditional view of compilers where the input is a program in a 
high-level computer programming language and the output 
is low-level assembly or machine code. 

There are many examples of such translators--discussed 
later in this paper--ttlat fall outside the traditional model 
of compilers; a lot of them don't involve programming lan- 
guages at all. In each of these cases, however, the translation 
process has roughly the same structure: an input string is de- 
composed into tokens; the token sequence is grouped into 
"phrases" whose structure is specified by (something akin 
to) a context-free grammar; and these phrases are finally 
mapped to the output sequence in a manner determined by 
their structure and the context in which they occur. Many 
of the issues that arise, including the ways in which the in- 
put can be organized into tokens and phrases and the ways 
in which such phrases can be represented and manipulated, 
are very similar across all of  these examples. Focusing on 
these commonalities makes it possible to present many tradi- 
tional compiler techniques, e.g., buffer management for lex- 
ical analysis, parsing techniques for context-free languages, 
and attribute evaluation and propagation in parse trees, in a 
much more general setting that emphasizes their relevance 
to a significantly wider range of  applications. It also shows 
how compiler development tools such as lex and yacc can be 
applied for many translation problems that students do not 
typically see as compilation problems. 

In addition to illustrating conceptual similarities between su- 
perficially very different translation problems, a discussion 
of the commonalifies and differences between various such 
translation problems can help clarify the kinds of situations 
where one can reasonably expect (or not expect) to con- 
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graph --~ Type id "{" stmt_list '} '  digraph G { a -> b; 
Type ~ digraph ] graph b -> a; 
stmt..list ~ stmt stmt.list [ e a - > c ; 
strut --~ node_strut edge_strut c - > b ; 

I subgraph I i d  = i d  } 
node_strut --+ id opt_attribs , ~ j 

opt_attribs --~ ' [' attrib_list '] ' I z C3 edge_stmt --+ edge_id edge_rhs_list opt_attribs 
edge_id --~ i d  I subgraph 
edge_rhs_list --~ edge_rhs edge_rhs_list [ a 
edge_rhs --~ edge_op edge_id 

Ca) 
(b) 

(c) 

Figure 1: (a) A (partial) grammar  for graph specifications for dot; (b) a sample graph specification; (c) the graph drawing 
produced by do t  for the specification in (b) 

struct such translators. For example, we can identify spe- 
cific technical reasons, e.g., metaphor and ambiguity, that 
make it impossible to construct an automatic translator that 
is able to translate arbitrary pieces of  English text into, say, 
French; but this allows us to conclude that in specific situa- 
tions where features such as ambiguity and metaphor can be 
eliminated, e.g., in technical manuals, it may  be possible to 
construct automatic translators for natural languages using 
techniques derived f rom compiler  design. 

The remainder of  this paper  considers how different com- 
ponents of  a traditional compiler  can be generalized along 
these lines. We have used this approach in the undergradu- 
ate Compiler  Design course at the University of  Arizona for 
several years. 

2 Some Example Translation Problems 

The previous section suggested a generalized view of trans- 
lators. In this section we discuss two specific examples of  
such systems in more detail in order to make the analogies 
to compilers nore explicit. 

2.1 Dot: A Graph-Drawing Tool 

D o t  is a tool that reads in a textual specification for a (di- 
rected or undirected) graph and produces a drawing of that 
graph, e.g., in the form of  a PostScript file [1]. The input 
to do t  is a text s t r ing- - i t  turns out that these strings can be 
described by a context-free grammar, i.e., fo rm a context- 
free language- -whi le  the output is a string that is a picto- 
rial representation of  the graph. This is illustrated in Figure 
1: Fig. l(a) shows part of  the grammar  for d o t  inputs, Fig. 
l(b) shows a sample input for dot, and Fig. l(c) shows the 
drawing for the graph of  Fig. l(b) produced by do t  (the ac- 
tual output produced by do t  is a PostScript file which, when 
viewed, yields the picture shown). 

The actions carried out by do t  when processing an input file 
such as that shown in Figure l(b) are as follows: 

1. Read in the graph specification using context-free parsing 
techniques. 

2. Check for  semantic consistency between components of  
the specification. For example,  edge_op must be ' - >' for a 
graph of  type d i g r a p h  and ' - - '  for one of  type g r a p h .  

3. Construct an internal representation of  the graph specified. 

4. Determine the "output" representation of this graph, i.e., 
where different nodes and edges will be  placed and how 
they will look. 

5. Modify the output representation to improve its appear- 
ance, e.g., by reducing the number  of  unnecessary edge 
crossings (where one edge crosses over  another) where 
possible. 

6. Generate the final PostScript for the graph. 

It is not difficult to see that there is a close correspondence 
between this sequence of  actions and those of a compiler: 
step (1) above corresponds to the lexical analysis and parsing 
phase of the compiler; step (2) to type checking; step (3) to 
syntax tree construction; step (4) to code generation; step 
(5) to code optimization; and step (6) to code generation. 
A similar comment  applies to other drawing tools such as 
j g r a p h  [4] and gnuplo t .  

2.2 Translating LaTeX to HTML 

LaTeX [2] is a typesetting system that is widely used for doc- 
ument  formatting (at least in academia); H T M L  is a markup 
language used for specifying the appearance of  web pages on 
the Internet. While superficially similar in that they both de- 
scribe the appearance of  documents,  the two languages have 
very different syn tax- - f ragments  of  context-free grammars 
for the respective syntaxes are shown in Figure 2 - - a n d  are 
considerably different in their features and strengths. 

Nevertheless, authors who prepare documents using LaTeX 
may then want to create web pages f rom them by translating 
them to HTML.  To this end, several tools are available for 
translating Latex documents to HTM.L (e.g., see [3, 5]). 

Such translators typically proceed as follows: 

1. Read in the LaTeX document using context-free parsing 
techniques. 
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document --+ hdr preamble body document -..-+ (ht:ml> head body < / h t m l >  
hdr ---r docCls DocOpts { class } head -...+ <head> title </head> [ z 
docCls --+ \documen~class title ~ <title> word_list </title> 
DocOpts ---+ ' [" doe_opt_list '] ' [ £ body --~ <body> body_opts > objlist </body> 
preamble ~ . . .  body_opts --+ body_opt_list I e 
body ---+ begn_doc secn_list end_doc body_opt_list --4 body_opt' ,  ' body_opt_list I body_opt 
begn_doc ---+ \ b e g i n { d o c u m e n t }  body_opt --+ b g c o l o r  = color I "'" 
end_doc --+ \ end{document}  objlist ---+ obj objlist [ E 
secn_list ---r secnsecn_list | e obj ~ para I table I l i s t [  image [ ...  
secn --~ secn_hdr para_list . . .  

(a) LaTeX (b) HTML 

Figure 2: Context-free grammar fragments for LaTeX and HTML documents 

2. Construct internal representations of  portions of  the docu- 
ment, as necessary. 

3. Process the LaTeX constructs and output the correspond- 
ing HTML. 

The sequence of steps here is somewhat different from that 
of  a graph-drawing tool or a compiler, primarily because the 
source and target languages are semantically much closer in 
this case, simplifying the translation process considerably. 
Nevertheless there are a number of similarities, primarily in 
the initial lexical analysis and parsing phase (step (1) above) 
and the final I-ITML generation (step (3) above), which is 
carried out by what is in effect a recttrsive tree walk. How- 
ever, the translation is not entirely trivial, since we have to 
deal with the problem of handling LaTeX features, such as 
mathematical symbols, pictures, etc., that are not supported 
by HTIVIL. This is typically done by resorting to GIF or 
JPEG images of the corresponding constructs. This requires 
the construction of an appropriate internal representation for 
the LaTeX construct and then transforming this to an image 
(step (2) above); the corresponding compiler analog is that of  
code generation for language features--such as inheritance 
and virtual function calls in an object-oriented language--  
that are not directly supported by the target architecture. 

In the undergraduate compiler design course at the Univer- 
sity of Arizona, the 0 th programming assignment has the stu- 
dents use lex and yacc  to implement, in roughly 1 ½ weeks, a 
translator from (a subset of) LaTeX to (a subset of) HTML. 
At that point, most students know very little about LaTeX, 
many don't know a lot about HTM_L, and none of them know 
anything about lex and yacc.  The  goals of  the assignment 
are twofold: first, to get the students acquainted with lex 
and yacc,  in preparation for a more traditional project imple- 
menting a compiler for a subset of  C; and second, to illustrate 
the applicability of  these tools to other translation problems. 
We use discussion sessions and on-line tutorials to give them 
just enough acquaintance with LaTeX and HTML so that the 
students know what they are doing. We revisit the problem 
in classroom discussions at the end of the term, when they 
are much better versed with these tools (lex and yacc); stu- 
dents often seem quite surprised and pleased to realize that 
they are now equipped to implement a nontrivial and practi- 
cally useful piece of  software, for a significant fragment of  
LaTeX, reasonably quickly and without a great deal of effort. 

3 Phases of a Compiler 

The execution of a compiler conceptually consists of four 
phases: (i) lexical analysis and parsing; (ii) semantic anal- 
ysis; (iii) code generation; and (iv) code optimization. This 
section discusses each such phase with regard to how its 
ideas, concepts, and techniques can be useful in translation 
problems outside the realm of traditional compilation. 

3.1 Lexical Analysis and Parsing 

Lexical analysis refers to the process of examining the input 
to be translated and dividing it into groups of adjacent char- 
acters, called "tokens," that form the units for the remain- 
der of the translation process. Conceptually, this is analo- 
gous to examining a stream of English text such as this doc- 
ument, character by character, and grouping the characters 
into units such as words, numbers, and punctuation. This is 
typically done using regular expressions to specify the stnlc- 
ture of  tokens, and using the corresponding finite state ma- 
chines to carry out pattern matching against the sequence 
of input characters being examined. Since this is the only 
phase of a compiler where the input is examined a charac- 
ter at a time, lexical analysis tends to be amongst the most 
expensive components of  the compilation process; compil- 
ers employ sophisticated buffer management techniques to 
reduce the cost of  lexical analysis as far as possible. Further, 
given the well-understood nature of  regular expressions and 
finite automata, tools, such as lex andf lex ,  have been devel- 
oped that can automatically generate lexical analyzers given 
a set of regular expressions that specify the structure of  the 
tokens to be recognized. These tools incorporate the buffer 
management techniques mentioned above, making the gen- 
eration of lexical analyzers a relatively straightforward and 
painless process. 

Parsing, or syntax analysis, is the process of imposing struc- 
ture on the sequence of tokens obtained from lexical anal- 
ysis. It is conceptually akin to taking a sequence of words 
and punctuation obtained from the tokerdzadon of a docu- 
ment and constructing sentences from it, together with in- 
formation about the structures of those sentences, e.g., the 
subject, object, modifiers, etc. The syntactic structure of  
programming languages is typically specified using context- 
free grammars, with the parsing process then being carried 
out using pnshdown automata obtained from those gram- 
mars. The result of parsing is a representation of the syn- 
tactic structure of the input program, typically in the form of 
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a structure called the parse tree. Again, the theory of context- 
free parsing is well understood, and tools, such as yacc and 
bison, can take (suitable) grammar specifications and gener- 
ate parsers f rom them. 

For many translation problems--par t icular ly  those where the 
input consists of  ASCII  t ex t - - the  tokens can be specified as 
regular expressions. This makes it possible to directly ap- 
ply tools and techniques developed for lexical analysis to 
handle tokenization for such problems. Similarly, the syn- 
tactic structure of  such token sequences can very often be 
expressed in the form of  context-free grammars,  making it 
possible to use off-the-shelf parser generators such as yacc 
or bison to construct parsers for them. 

A specific example of  such a non-compiler problem that can 
be handled using lexical and syntax analysis techniques and 
tools borrowed from Compiler  Design is that of  database 
query translation, f rom a domain-specific natural-language- 
based query language convenient for humans to a language 
such as SQL supported by commercial  database systems. 
My personal acquaintance with such a problem is in the 
context of  a local company that makes software for hospi- 
tals and medical applications. I was told me of  a product 
they were working on to allow doctors to quickly look up 
patient records, medication histories, etc., f rom a central- 
ized database. Recognizing the unlikelihood of  having doe- 
tors learn SQL, they designed a simple natural-language-like 
domain-specific query language for this application, strug- 
gling long and hard to build an ad hoc front end for this 
language, where a lex-and-yacc front-end would have been 
much quicker to build, and perhaps sturdier. (I wish I could 
say that I prevailed upon them to use The Right Tools for 
their project; unfortunately, the manager involved had nei- 
ther the time nor the inclination to look into lex and yacc.) 

The observation that the front-end issues for many transla- 
tion problems closely resemble those of a compiler 's  is not 
particularly deep. The conclusion that follows, that tech- 
niques and tools developed for compiler front ends may be 
applicable to other translation problems as well, also does 
not come as a great surprise. However, students often seem 
to compaarnental ize their knowledge, and thereby find it dif- 
ficult to apply lessons f rom compiler design courses to other 
translation problems unless the underlying similarities be- 
tween the problems are pointed out explicitly and repeatedly. 
Once they see the similarities, however, they find that us- 
ing tools and techniques f rom compiler design can be very 
helpful. As an example, a few years ago, while teaching 
an undergranate course on Formal Languages and Automata 
Theory, I asked one of my teaching assistants to write a soft- 
ware package to allow our students to specify various sorts 
of  automata in the form of  a text file and then simulate their 
behavior on input strings. Despite being a bright student and 
talented programmer, he struggled unsuccessfully with the 
construction of a front end for over a week, after which I 
suggested that he use lex and yacc to construct the front end. 
Once he was able to abstract away from specifications for 
automata and view this as just another translation problem, 
he was able to program up the front end in under a day. 

3.2 Semantic Analysis 

Semantic analysis refers to the computation and propaga- 
tion of information that is not part of  the context-free syn- 
tax of the language. In a compiler, this might refer to the 
type or scope of a variable. A common way of  handling 
such information is using "attribute grammars," which as- 
sociate properties ("attributes") with grammar symbols and 
specify rules, called semantic rules, for computing their val- 
ues. These rules in effect specify the flow of information 
between different points in the parse tree for a program. 

Not surprisingly, in.formation has to be propagated along the 
parse tree for many other translation problems as well. An 
example that we discuss in class involves displaying H T M L  
documents in a browser. The input in this case is an H T M L  
document, with tags such as <b 5--- < /b>  and < i >--- < / 5_ > 
that affect the way specific characters are displayed, as well 
as the amount of  space taken by a group of  characters (a 
boldface character is typically wider than one that is not). 
The output is the sequence of  characters being displayed in 
the browser window. Among the problems to be addressed is 
the determination of  when the line being displayed is "long 
enough," making it necessary to emit  a line break character. 
This makes it necessary to figure out how to compute and 
propagate semantic information about the font in use at any 
particular point in the text as well as the line length in the 
display window up to that point. 

While this problem is straightforward when restricted to sim- 
ple text with a few different fonts, it becomes considerably 
more complex when other kinds of  objects, e.g., images and 
tables, are allowed. Thinking about it in terms of  attributes 
and semantic rules provides a systematic approach to ad- 
dressing the problem, and makes it easier to figure out what 
in.formation needs to be propagated, how, and between which 
points. While at first glance the problem seems very far re- 
moved from programming language compilation, ideas and 
techniques f rom compiler design carry over quite directly to 
produce a clean solution to a technically nontrivial problem. 

3.3 Code Generation 

Code generation in a compiler is the process of  traversing 
the tree representation of a program to generate assembly or 
machine code for the target machine. More generally, how- 
ever, we can think of  this as an instance of the process of  
translating f rom a representation of  a source language entity 
to that of  a corresponding target language entity. This view 
accommodates  many other translation problems, and allows 
us to think of them within a coherent framework. 

Typically, code generation involves a post-order traversal of  
the tree representation of  the input program. This means 
that the children of a node a in the t r ee - -which  represent 
the operands of the operation at node a - - a r e  processed first, 
i.e., have code generated to compute their values. After this, 
node a is processed to generate code for its operation; this 
can be code that uses the values computed by the child nodes 
to compute some other value (e.g., i f  a is an arithmetic oper- 
ation), or it can be "'glue" code that inco~orates  additional 
instructions to manage the correct control flow with the code 
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for a ' s  children (e. g., if  a represents an if-then-else or a loop). 
The essential intuition here is that the node a specifies how 
(the values computed by the code generated for) its children 
are to be used. 

This intuition can easily be transferred to other translation 
problems. When translating a technical manual from English 
to German, say, this involves traversing the tree representa- 
tion of the original English sentences. The actions at a par- 
ticular node of the tree, then, might involve determining the 
order in which the translated fragments from the child nodes 
are assembled, e.g., with verbs moved towards the end of the 
sentence. When translating a natural-language query from a 
user into an SQL query for a back-end database, this might 
involve mapping user-level constructs (e.g., "which account 
has the highest balance?") to the appropriate SQL constructs 
("select . . . "). The correspondence is not difficult to 
see once it is pointed out. However, by generalizing the ac- 
tions of  the back end of a compiler, f rom the narrow do- 
main of emitting assembly code for a microprocessor to the 
broader domain of producing a target language entity, we 
can understand the essential similarities between the back- 
end actions for a variety of  translation problems. 

3.4 Optimization 

Compiler courses traditionally treat optimization in terms of  
code transformations that make the program run faster. A 
more general view is that optimization aims to reduce the 
"cost" of the generated code for some cost measure of  inter- 
est. Traditionally, the cost measure most often used has been 
execution time; however, even within mainstream compiler 
research, other measures of  cost have recently been gaining 
credence: these include code size (for limited-memory pro- 
cessors, e.g., in embedded and mobile systems) and energy 
usage (e.g., for battery-operated portable computers). 

When we generalize to other translation problems, it may 
still make sense to consider the "cost" of  a representation. 
As an example, the graph drawing tool dot [1] takes a tex- 
tual specification of a graph as input and produces a pictorial 
representation of  the graph, e.g., as a JPEG or PostScript 
file, as output. Since a picture with many edges crossing one 
another is harder to understand than one with fewer edge 
crossings, dot tries to "optimize" the pictorial representation 
it produces by changing the layouts of  vertices and edges so 
as to reduce the number of  edge crossings. Conceptually, this 
is exactly analogous to the optimization phase of a compiler. 
Other such examples of "optimization" include eliminating 
double negatives, or transforming passive voice sentences to 
active voice in machine translation of natural languages. 

I f  the only effect of  drawing these parallels was to point out 
analogies between components of  different translation prob- 
lems, they would have limited utility. It turns out that we can 
use these analogies to illustrate deeper aspects of  the trans- 
lation process than is usually covered in a typical compiler 
course. For example, dataflow analyses are often discussed 
as a collection of algorithms--e.g. ,  for liveness, or reaching 
definitions--without the observation that the raison d'etre 
for these analyses is to infer invariants about the behavior 
of  a program; such invariants can then be used to support 

optimizations or other transformations in a way that guaran- 
tees "semantic equivalence" between the original and trans- 
formed representations. In other words, these analyses arise 
out of  questions of  the form "what properties have to hold 
such that we can carry out some specific sort o f  transforma- 
tion that we believe may be profitable ?" Transferred to other 
translation problems, we can ask similar questions about in- 
variants necessary to guarantee semantic equivalence--or, 
even more generally, preserve some property of interest--  
when carrying out "optimizations" such as restructuring a 
natural language sentence, or changing the layout of  a graph. 

4 Conclusions 
Compiler design courses typically focus narrowly on the 
translation of high-level programming languages into low- 
level assembly or machine code. Given that the majority 
of  computer science students are unlikely yo be involved in 
compiler design as a day-to-day professional activity, this 
limits the relevance of such courses to the students' even- 
tual careers. However, it is possible to generalize the tradi- 
tional view and consider the problem of translating from a 
source language to a target language, where both the source 
and target languages are defined broadly, e.g., need not even 
be programming languages. Such a generalized view in- 
eludes many translation problems, e.g., document formatting 
or graph drawing, that are not traditionally viewed as "com- 
piler problems." Viewing such translation problems in this 
way allows us to identify and understand essential underly- 
ing commonalities of the translation process. 
This has several benefits, among them that the use of  tools 
such as lex and yacc to generate the front end of a transla- 
tor reduces development time, and that by relying on well- 
understood techniques and avoiding ad hoc approaches to 
the lexical analysis and parsing problems, reliability is en- 
hanced. Overall, therefore, students benefit from having a 
deeper understanding of  a variety of  translation problems; 
being able to apply techniques and tools developed for com- 
pilers to other translation problems; and thereby being able 
to produce better code more quickly. 
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