
86	 Copublished by the IEEE CS and the AIP	 1521-9615/09/$25.00 © 2009 IEEE� Computing in Science & Engineering

S cie n t i f ic P r o g r a m m i n g

Editors: Konstantin Läufer, laufer@cs.luc.edu

Konrad Hinsen, hinsen@cnrs-orleans.fr

S ince the early days of com-
puting, software development
techniques have changed

almost as much as computer tech-
nology itself. Ever more powerful
hardware made it possible to write
ever more complex software, which
both required ever better develop-
ment tools and techniques and made
their implementation possible. Pro-
grammers thus moved from machine
code to assembly languages and then
problem-oriented programming lan-
guages, which have evolved to inte-
grate techniques such as structural
and object-oriented programming.
Another evolution went from mono-
lithic programs via separately compil-
able modules and libraries to software
component technologies. However, in
one respect, today’s popular program-
ming techniques are still the same as
those the pioneers used: our programs
consist of statements that modify data
stored in the computer’s memory until
that memory contains the desired re-
sult. This approach closely resembles
how a computer works at the hardware
level: the processor fetches data from
memory, performs elementary opera-
tions on it, and writes the result back
to a memory cell.

In fact, this approach is so com-
mon that most of you have probably
never questioned it. And yet, an al-
ternative approach was developed
as mathematical theory in the 1930s

(Alonzo Church’s λ-calculus) and as a
programming technique in the 1950s
(John McCarthy’s Lisp language)—
functional programming. Although
functional programming has been
very popular in computer science
research for several decades, its use
for writing real-life programs is rela-
tively recent. Of the many reasons
for this, the two most important are
that functional programming is very
different from traditional program-
ming (also referred to as imperative
programming) and thus requires a lot
of learning and unlearning, and that
computer hardware implements the
imperative programming model, so
imperative programs are easier to
compile into efficient machine code
than functional programs. However,
several clear signs indicate a growing
interest in functional programming
techniques—recent programming
languages (such as Sun’s Fortress or
Microsoft’s F#) have the explicit goal
of supporting it. The reason is that
functional programming has several
advantages for concurrent and par-
allel programming. Experience also
suggests that functional programs are
more robust and easier to test than
imperative ones.

In scientific computing, research-
ers have mainly used functional pro-
gramming for symbolic processing. In
fact, the most widely used functional
programming language in science is

probably Mathematica, although most
Mathematica users don’t write com-
plex functional programs. Another
example of symbolic processing is the
widely used fast Fourier transform li-
brary, FFTW,1 which uses a function-
al code optimizer written in OCaml
to produce optimized C code for a
Fourier transform of a given length.
In numerical applications, functional
programming doesn’t yet play an im-
portant role. Perhaps the most ambi-
tious project to introduce it into the
number-crunching world was Law-
rence Livermore National Laborato-
ry’s Streams and Iteration in a Single
Assignment Language (SISAL) proj-
ect, which started in 1983. SISAL is a
functional language with paralleliza-
tion support, designed specifically for
the needs of scientific applications.
Unfortunately, it didn’t attract the
attention it deserved, and funding
stopped in 1996. Today, SISAL lives
on as an open source project (http://
sorceforge.net/projects/sisal).

This article’s purpose is to explain
what functional programming is and
how it differs from traditional impera-
tive programming. I also explain how
functional programming helps with
concurrent and parallel program-
ming. The language I use in the ex-
amples is Clojure, a modern dialect
of Lisp (see the sidebar “Clojure and
the Lisp Family”), but everything said
here applies equally to other function-

Adopting a functional programming style could make your programs more robust, more compact, and more
easily parallelizable. However, mastering it requires some effort.

The Promises
of Functional Programming
By Konrad Hinsen

July/August 2009� 87

al languages, only the syntax will be
different. If you’re interested in func-
tional programming, you should also
read (or reread) Jerzy Karczmarczuk’s
1999 article in this magazine,2 which
illustrates how functional program-
ming can yield elegant solutions to
problems in mathematical modeling.

The Basics
The fundamental principle of func-
tional programming is that you re-
alize a computation by composing
functions. The word “function” is
used here in the mathematical sense—
a mapping from input values to output
values—whereas what most program-
ming languages call “functions” are
subroutines that return a value. One
important difference is that a func-
tion in the mathematical sense always
produces the same output when given
the same input. An operation such as
“get the next line from a file” isn’t a
function because each time you call,
it produces a different return value.
Another important difference is that
a mathematical function doesn’t “do”
anything other than return a value. It
isn’t supposed to have side effects—for
example, it shouldn’t write anything to
a file or change a variable in memory.

If a program is composed of func-
tions, and functions aren’t supposed
to change any variables, then what are
variables good for? Nothing, and that’s
why functional programming doesn’t
have variables. This is probably the
biggest surprise to those who discover
functional programming because vari-
ables are so very fundamental to our
traditional ways of writing programs.
The other missing fundamental con-
cept is loops. After all, what’s the point
of a loop if nothing can change be-
tween iterations because there are no
variables? By now, you might be con-
vinced that it’s absolutely impossible to

write a useful program in a functional
style, but keep reading.

What replaces loops in functional
programs is recursion. A function
is called recursive if it calls itself—
directly or indirectly. Of course,
calling itself makes sense only if the
arguments change between calls.
Moreover, if you ever want to get out
of the call-yourself chain, a recursive
function must return without calling
itself for some arguments. Let’s look
at a simple example of recursion:

(defn countdown [n]

 (if (zero? n)

 (list 0)

 (cons n

 (countdown

 (- n 1)))))

These six lines define a function
countdown of a single argument n,
which should be an integer (although
this is neither said nor enforced, Clo-
jure being a dynamicallly typed lan-

guage like Python and JavaScript). If n
is zero, the return value of countdown
is (list 0), a list containing the sin-
gle element 0. Otherwise (we’re look-
ing at lines four to six now), the return
value is a list constructed by prepend-
ing n to the return value of count-
down for (- n 1), which is Clojure’s
way of writing n-1. The function call
(countdown 1) thus returns (cons
1 (countdown 0)), which, after ex-
ecuting the recursive function call,
becomes (cons 1 (list 0)). Look-
ing up the definitions of the functions
cons and list will tell you that the
final result is the two-element list (1
0). This simple example illustrates
how to use recursion for looping: with
each recursive call, the argument be-
comes smaller, up to the point where
it’s handled directly without any fur-
ther recursion.

A closer look at the chain of recur-
sive calls to countdown also reveals
why functional programming can live
without variables. At each recursive

Clojure and the Lisp Family

The language used in the main text’s examples is Clojure, a modern dialect
of the Lisp language family. Lisp stands for “list processing,” which hints at

the motivations of John McCarthy, who developed the first Lisp language in
the late 1950s for use in artificial intelligence research. Today, the most widely
used Lisp dialects are Scheme and Common Lisp.

The Lisp language family’s distinctive feature is the principle that “code is
data.” Lisp provides a syntax for a simple yet flexible data structure—nested lists.
It then defines how to interpret nested lists that follow specific conventions as
executable code. The advantage of expressing code in a data structure is that
Lisp code can easily generate (and then execute) other Lisp code, a fact that pro-
grammers have exploited from the beginning through Lisp macros, the world’s
first meta-programming system and probably still its most powerful one.

Lisp has the reputation of being slow, but that isn’t true anymore. Many
modern compilers can produce code that can compete with C in performance
when given appropriate optimization hints. However, it remains very difficult
to produce programs that are both efficient and portable between compilers
and platforms.

Clojure is a recent Lisp dialect that sets itself apart by three features: it has
four highly optimized data structures (lists, vectors, maps, and sets) designed
for pure functional programming, it offers extensive support for concurrency,
and it was designed for the Java Virtual Machine with the goal of easy inter
operability with other JVM languages, including Java itself. For more informa-
tion about Clojure, see its Web site at http://clojure.org.

S cie n t i f ic P r o g r a m m i n g

88� Computing in Science & Engineering

call, n decreases by one, which looks a
bit as if n were a variable decremented
from its initial value to zero; indeed,
a compiler could transform the recur-
sive function into a subroutine with a
loop over n for efficiency reasons. The
crucial difference is that n isn’t a refer-
ence to a piece of memory that could
be modified at will, intentionally or
by mistake. In fact, as anyone with
debugging experience has learned the
hard way, the problem with variables
is often that looking at a variable’s
value doesn’t tell you where that value
came from. In contrast, you can al-
ways trace the call chain that leads to
n having a specific value at a specific
point in the function countdown back
to its beginning. The function call
chain is a complete description of the
data flow through the program, and
it’s a very useful feature for verifying a
program’s correctness.

I hope I’ve convinced you that vari-
ables and loops aren’t as essential as
you might have thought. But what
about other side effects? Is it really
practical to work with programs that
can’t write data to a file? Or, in fact,
produce any output? Of course, the
answer is no: the pure functional pro-
grams I’ve described to this point will
just heat up your computer. You need
side effects if you want your program
to have any interaction with the real
world. But you can—and should—
limit side effects to very few places in
a program.

We can categorize functional pro-
gramming languages by their attitude
to unavoidable side effects. Pure lan-
guages (such as Haskell) allow them
only inside special language con-
structs, permitting the compiler to
verify the absence of accidental side
effects everywhere else. Impure lan-
guages (the majority) leave the respon-
sibility for the use of side effects fully

to the programmer. As is so often the
case, both approaches have their good
and bad sides.

Functional Abstractions
Abstractions are fundamental to writ-
ing nontrivial programs. They permit
expressing an algorithm in terms of
concepts that are useful in its context,
rather than in terms of operations that
the computer or the programming
language already happens to provide.
A programmer would write a least-
squares fit problem, for example, in
terms of linear-algebra operations—
such as matrix multiplication and
solving linear systems of equations—
that work on an array data structure.
Compilers and libraries (written by
you or by someone else) then trans-
form the algorithm into something
that a computer can handle.

The abstractions provided by popu-
lar programming languages for sci-
entific computing include basic data
structures (integer, real and complex
numbers, arrays, and structures)
and a notation for numerical expres-
sions that’s similar to mathemati-
cal notation. Programmer-provided
abstractions are mainly subroutines.
Object-oriented languages add power-
ful constructs for data abstraction: the
programmer can add problem-specific
data types to the general ones provid-
ed by compiler and runtime systems.

In functional programming, al-
gorithmic abstractions are the most
prominent. A developer identifies and
implements patterns that occur re-
peatedly in algorithms in the form of
functions, which is made possible by
the fact that functional programming
languages consider functions to be
data. It’s possible, and even very com-
mon, to write functions that take oth-
er functions as parameters, returning
yet another function. Such functions

are called higher-order functions, as op-
posed to first-order functions whose
arguments and return values are all
standard data items. In mathematics,
you would use the term operator, an
example being the derivative operator
that maps a function to its derivative,
which is itself a function.

As a simple example, let’s consider
the following operations: calculating
the sum of a list of numbers, calculat-
ing the product of a list of numbers,
and finding the set of all items that oc-
cur in a list of values. What these (and
many more) operations have in com-
mon is a simple algorithmic pattern:
you start with an initially “empty” ac-
cumulator value (0, 1, the empty set)
and then iterate over a list, combining
at each step the current accumula-
tor value with one list element. The
combination operations for the three
examples given are addition, multi-
plication, and adding an item to a set.
This algorithmic pattern is known as
reduction; it’s implemented in Clojure
via the function reduce. We can thus
write our three examples as

(defn sum [numbers]

 (reduce + 0 numbers))

(defn product [numbers]

 (reduce * 1 numbers))

(defn set-of-items [items]

 (reduce conj #{} items))

The first argument to reduce is the
combination operation, which is a
function of two arguments. In Clojure,
we can simply use + and * for addition
and multiplication because they’re
plain functions—there’s no special
notation for mathematical operators.
In the last example, conj is a function
that adds an item to a collection.

It’s interesting to see how we could
implement reduce if it weren’t provid-
ed already. Here’s one way to write it:

July/August 2009� 89

(defn my-reduce

 [op initial items]

 (if (empty? items)

 initial

 (my-reduce

 �op

(op initial

 (first items))

(rest items))))

This is again a recursive function. If
its input list items is empty, it just re-
turns the initial value. This is the re-
cursion’s exit; otherwise, it applies the
function op to the initial value and the
first element of the list ((op ini-
tial (first items))) and feeds
the result to a recursive call on what’s
left of the list after removing the first
element ((rest items)). Note that
Clojure doesn’t treat the argument op
in any special way merely because it’s
a function. Functions are perfectly
ordinary data items, just like integers
and text strings.

Functions can also create and re-
turn other functions, as illustrated in
the following (somewhat contrived)
example, which defines a function

make-adder that takes a numerical
argument x and returns a function of
another numerical argument y that
adds x and y:

(defn make-adder [x]

 (fn [y] (+ x y)))

Calling (make-adder 2) returns a
function that adds 2 to its argument.
We can use this function just like any
other one, such as

((make-adder 2) 3)

which yields 5. Note that the result
of (make-adder 2) is a function
that stores an integer value (2) inter-
nally that was passed as an argument
to make-adder. A function that cap-
tures a value in this way is called a clo-
sure; it’s a widely used programming
technique in functional programs. As
you might have guessed, this is where
the Clojure language derived its name,
with the “j” hinting at Java.

Concurrency and Parallelism
Concurrency (the existence of sev-

eral execution threads operating on
the same data) and parallelism (the
division of a computational task into
multiple communicating processes
running in parallel) are two aspects
of computing rapidly gaining in im-
portance. The main reason is that
single-processor performance is no
longer improving at the pace it used
to; instead, computers are becom-
ing more powerful by integrating
more computational cores. Exploiting
such machines requires concurrency,
parallelism, or both. Unfortunately,
today’s mainstream techniques for
concurrent and parallel programming
are difficult to learn and quite error-
prone in practice.

The big issue with concurrency is
the difficulty of maintaining the data
in a coherent state: it must be impos-
sible for one execution thread to mod-
ify data that another one is accessing
(reading or writing) at the same time.
So, if several threads need to modify a
data item, they must do so in a coordi-
nated way. This is currently achieved
via locks, but they’re difficult to use,
and their incorrect use can go un-

Other Functional Languages

We can group the most popular languages that sup-
port functional programming into just a few families.

The oldest one, the Lisp family, is described in the “Clojure
and the Lisp Family” sidebar.

The second group is the ML family, which first appeared
in the 1970s. Today, its most prominent members are Stan-
dard ML and OCaml, but Microsoft’s recently published F#
language might soon catch up with them. The ML languag-
es differ from the Lisp family in two respects: they’re stati-
cally typed, using the Hindley-Milner inference algorithm to
permit the compiler to deduce the types of most functions
from the way they’re used, and they propose a pattern-
matching syntax for defining functions that makes many
definitions look similar to common mathematical notation.

The Haskell language is the result of a collective effort to
define a common functional language for use in program-
ming language research. It’s similar in many respects to the
ML family, the most important difference being lazy evalu-
ation: a data item (such as a list element) is evaluated only
when its value is actually required in a computation. This

is possible only in a pure functional setting because side
effects would otherwise occur at completely unpredictable
times. Lazy evaluation makes it possible to work with infi-
nite data structures, avoid unnecessary computations, and
define control structures as simple functions. However, lazy
evaluation also makes a program’s CPU time and memory
usage profile more difficult to understand and generally
leads to slower programs overall because of unavoidable
bookkeeping overhead.

Two recent languages, Scala (for the Java Virtual Ma-
chine) and Nemerle (for the .NET platform), are hybrid
languages that add functional programming features to
otherwise quite standard object-oriented languages. Sun’s
new Fortress language, whose main intended application
domain is high-performance computing, also proposes a
mixture of functional and object-oriented features.

Moving on to special-purpose languages, Wolfram’s
computer algebra system Mathematica is based on a
proprietary functional programming language. Other
computer algebra systems also propose functional features,
although not always to the point of allowing a full func-
tional programming style.

S cie n t i f ic P r o g r a m m i n g

90� Computing in Science & Engineering

noticed for a long time before errors
show up. As for parallelism, the main
difficulties are identifying independent
computations inside a program and
coordinating them with the required
communication operations such that
the resulting program always produces
the correct result and does so efficient-
ly for typical input parameters.

Functional programming is fre-
quently cited as a promising tech-
nique in this context. Pure functional
code has no variables and thus no data
coherence issues or need for locking.
Moreover, all data dependencies are
explicit, making it possible to apply a
large number of program transforma-
tions (with the goal of parallelization)

while guaranteeing that the program’s
result won’t change.

I f this makes you hope that auto-
matic parallelization will be your

welcome gift once you succeed in
entering the world of functional
programming, you’re in for disap-
pointment. Although it’s true that
compilers for functional languages
could in principle transform a se-
rial into an equivalent parallel pro-
gram automatically, there remains
the problem of finding such a trans-
formation that actually yields an ef-
ficient program for a given parallel
computer and given input data. Com-
piler technology isn’t yet up to this
task, although this could well change
in the future, in particular with par-
allelizing just-in-time compilers that
have access to a program’s execution
time profile. For the near future, it’s
reasonable to expect compilers that
create parallel programs semiauto-
matically based on programmer-pro-
vided performance hints. This would
already be a significant step forward
compared to today’s parallel pro-
gramming techniques.�

References
M. Frigo and S.G. Johnson, “The Design and 1.	
Implementation of FFTW3,” Proc. IEEE, vol.
93, no. 2, 2005, pp. 216–231.

J. Karczmarczuk, “Scientific Computation and 2.	
Functional Programming,” Computing in Sci-
ence & Eng., vol. 1, no. 3, 1999, pp. 64–72.

Konrad Hinsen is a researcher at the Centre

de Biophysique Moléculaire in Orléans and at

the Synchrotron Soleil in Saint Aubin, France.

His research interests include protein struc-

ture and dynamics and scientific computing.

Hinsen has a PhD in theoretical physics from

RWTH Aachen University, Germany. Contact

him at hinsen@cnrs-orleans.fr.

The American Institute of Physics is a not-for-profit membership corporation chartered
in New York State in 1931 for the purpose of promoting the advancement and diffusion
of the knowledge of physics and its application to human welfare. Leading societies in
the fields of physics, astronomy, and related sciences are its members.

In order to achieve its purpose, AIP serves physics and related fields of science and
technology by serving its member societies, individual scientists, educators, students,
R&D leaders, and the general public with programs, services, and publications—
information that matters. The Institute publishes its own scientific journals as well as
those of its member societies; provides abstracting and indexing services; provides
online database services; disseminates reliable information on physics to the public;
collects and analyzes statistics on the profession and on physics education; encourages
and assists in the documentation and study of the history and philosophy of physics;
cooperates with other organizations on educational projects at all levels; and collects
and analyzes information on federal programs and budgets.

The scientists represented by the Institute through its member societies number more
than 134 000. In addition, approximately 6000 students in more than 700 colleges and
universities are members of the Institute’s Society of Physics Students, which includes
the honor society Sigma Pi Sigma. Industry is represented through the membership of 37
Corporate Associates.

Governing Board: Louis J. Lanzerotti (chair)*, Lila M. Adair, David E. Aspnes, Anthony
Atchley*, Arthur Bienenstock, Charles W. Carter Jr*, Timothy A. Cohn*, Bruce H. Curran*,
Morton M. Denn*, Alexander Dickison, Michael D. Duncan, H. Frederick Dylla (ex
officio)*, Janet Fender, Judith Flippen-Anderson, Judy R. Franz*, Brian J. Fraser, Jaime
Fucugauchi, John A. Graham, Timothy Grove, Mark Hamilton, Warren W. Hein*, William
Hendee, James Hollenhorst, Judy C. Holoviak, Leo Kadanoff, Angela R. Keyser, Timothy
L. Killeen, Harvey Leff, Rudolf Ludeke*, Kevin B. Marvel*, Patricia Mooney, Cherry
Murray, Elizabeth A. Rogan*, Bahaa E. A. Saleh, Charles E. Schmid, Joseph Serene,
Benjamin B. Snavely (ex officio)*, A. F. Spilhaus Jr, Gene Sprouse, Hervey (Peter)
Stockman, Quinton L. Williams.�
*Members of the Executive Committee.

Management Committee: H. Frederick Dylla, Executive Director and CEO; Richard
Baccante, Treasurer and CFO; Theresa C. Braun, Vice President, Human Resources;
Catherine O’Riordan, Vice President, Physics Resources; John S. Haynes, Vice
President, Publishing; Benjamin B. Snavely, Secretary.

w w w.aip.org

For access to more content from the IEEE Computer Society,
see computingnow.computer.org.

This article was featured in

Top articles, podcasts, and more.

computingnow.computer.org

http://computingnow.computer.org
http://computingnow.computer.org

