
by Pete Goodl i f fe

San Francisco

®

S O F T W A R E
A R C H I T E C T U R E

Laying the Foundations
of Software Design

14

In this chapter:

What is software architecture?

How is software architecture
different from code design?

The qualities of good
architecture

Overview of key architectural
styles

Architecture is the art of how to waste space.
—Philip Johnson

Go into a city. Stand in the middle of it. Look
around. Unless you’ve picked an unusual place,
you will be surrounded by a large number of
buildings of varying ages and styles of construction.
Some fit into their surroundings sympathetically.
Others look totally out of place. Some are aesthet-
ically pleasing and seem well proportioned. Others
are downright ugly. Some will still be there in 100
years’ time. Many will not.

The architects who designed these buildings
took a lot into consideration before they put
pencil to paper. During the process of design,
they worked carefully and methodically to ensure
that the building was feasible to fabricate, and
they balanced all the contending forces: user
requirements, construction methods, maintain-
ability, aesthetics, and so on.

Software is not made of bricks and mortar, but
the same careful thought is required to ensure that

262 Chapter 14

a system meets similar sets of requirements. We have been erecting buildings
far longer than we’ve been writing software, and it shows. We’re still learning
about what makes good software architecture.

In this little foray into the world of software architecture, we’ll investigate
some common architectural patterns and look at what software architecture
really is, what it really isn’t, and what it’s used for.

What Is Software Architecture?

Is this just another term that stretches the building metaphor a little thinner
(see “Do We Really Build Software?” on page 177)? Maybe so, but it is a
genuinely useful concept. Software architecture is sometimes known as high-
level design; regardless of the terms used, the meaning is the same. Architecture
is a more evocative description of the concept.

Software Blueprints
As an architect prepares his blueprint for a building, the software architect
prepares a blueprint for the software system. However, while a building’s blue-
print is a rigorously detailed plan with all the important features included, our
software architecture is a top-level definition, an overview of the system that
specifically avoids too much detail. It is macro, not micro.

In this high-level view, all implementation details are hidden; we just
see the essential internal structure of the software and its fundamental
behavioral characteristics. The architectural view does the following:

Identifies the key software modules (or components, or libraries; at this
point call them what you like—blobs)

U N D E R G R O U N D M O V E M E N T

I joined a project that had produced a large amount of undocumented software,
erected without plan or purpose, with no architect to guide the construction process.
Naturally, it had become an unsightly carbuncle. The time came when we needed to
understand how it all really worked, and an architectural diagram of the system was
drawn up. There were so many different components (many largely redundant),
inappropriate interconnections, and different methods of communication that the
diagram was an intense jumble of tightly woven lines in many interpretive colors—
almost as if a spider had fallen into a few different cans of paint and then spun
psychedelic webs across the office.

Then it struck me. We had all but drawn a map of the London Underground. Our
system bore such a striking resemblance, it was uncanny—it was practically incomp-
rehensible to an outsider, with many routes to achieve the same end, and the plan was
still a gross simplification of reality. This was the kind of system that would vex a
traveling salesman.

The lack of architectural vision had clearly made its mark on the software. It was
hard to work with and hard to understand, with bits of functionality strewn across
completely random modules. It had gotten to the point where the only useful thing
you could do with it was throw it away.

In software construction, as in building construction, the architecture really matters.

Sof tware Archi tec ture 263

Identifies which components communicate with each other

Helps to identify and determine the nature of all the important inter-
faces in the system, clarifying the correct roles and responsibilities of the var-
ious subsystems

This information allows us to reason about the system as a whole without
having to understand how every individual part will work. The architecture
provides a framework into which the later development fits. It shows how
work can be split between teams and allows you to weigh different imple-
mentation strategies.

Not only does the architecture give a picture of how the system is com-
posed, it also shows how it should be extended over time. In large teams, a
program will develop more elegantly when there’s a clear, unified vision of
how the software should be adapted, of what should be put in each module,
and of how modules connect.

KEY CONCEPT The architecture is the single largest influence on the design and future growth of a soft-
ware system. It is therefore essential to get it right in the early stages of development.

As an up-front activity, the architecture is our first chance to map the
problem domain (the Real World problem we are solving) to a solution domain.
There isn’t always a simple one-to-one mapping of objects and activities
between the two, so the architecture shows how to think about one in terms
of the other.

Exactly what needs to be addressed by the software architecture will
differ from project to project. The target platform is not important at this
stage; it may be possible to implement the architecture on a number of
different machines using different languages and technologies. However:

For certain projects, it may be important to specify particular hardware
components, most likely for embedded designs.

For a distributed system, the number of machines and processors and
the split of work between them might be an architectural issue. Mini-
mum and average system configurations should be considered.

The architecture may also describe specific algorithms or data structures if
they are fundamental to the overall design (although this is far less likely).

There is always a trade-off. The more information that is set in stone at
the architectural level, the less room for maneuverability there is at a later
design or implementation stage.

Points of View
In physical architecture, we use a number of different drawings or views of
the same building: one for the physical structure, one for the wiring, one
for the plumbing, and so on. Similarly, we develop different software views
in the architectural process. Four views are commonly recognized:

The conceptual view
Sometimes called the logical view, this shows the major parts of the system
and their interconnections.

264 Chapter 14

The implementation view
This view is seen in terms of the real implementation modules, which
may have to differ from the neat conceptual model.

The process view
Designed to show the dynamic structure in terms of tasks, processes, and
communication, this view is best used when there’s a high degree of con-
currency involved.

The deployment view
Use this view to show the allocation of tasks to physical nodes, in a dis-
tributed system. For example, you may split functionality between a
database server and a farm of web interface gateways.

You don’t start with all of these. Particular views arise as development
work progresses. The main result of the initial architectural phase is the
conceptual view, and that’s what we’re concentrating on here.

Where and When Do You Do It?
The architecture is captured in a high-level document called something
imaginative like the architecture specification. This specification explains the
system’s structure and shows how it fulfills the requirements, including
important issues like the strategy to reach any performance requirements
and how acceptable fault tolerance will be achieved.

KEY CONCEPT Capture system architecture in a known place; a document accessible to everyone
involved—programmers, maintainers, installers, managers (perhaps even customers).

The architecture is the initial system design. It is therefore the first
developmental step after the requirements have been agreed upon. It’s
important to generate a specification up front because it provides a first

F O R W H A T I T ’ S W O R T H

Software architecture has wide-ranging implications—far beyond the initial structure
of the code, right into the heart of the software factory. The architecture will be a
lasting legacy, both in the technological and practical realms. Architecture affects
how the code will grow and how teams of people will work together to extend it;
software design affects workflow. With a three-tiered architecture, you’ll end up with
three teams of people working on the separate parts. There will probably be three
sets of admin staff too, and three management reporting lines. Someone’s early
design decision will affect which desk you sit at.

Since the architecture determines how malleable the software is and how well the
codebase can accommodate future requirements, it ultimately influences the commer-
cial success of your company. A bad architecture is more than just inconvenient—it
could cost you your livelihood. Serious stuff.

As programmers, it affects us most directly—it will affect how fun our work will be.
No one wants to labor intensely to add a minuscule feature that would have taken
two seconds with a correct initial design. At conception, check that the architecture
supports what you think it should, not just what the architects believe.

Sof tware Archi tec ture 265

chance to review and validate the design decisions that will have the most
significant impact on the project. It will expose weaknesses and potential
problems. Reversing a bad decision this early on will save a lot of time, effort,
and money. It’s expensive to change the foundation of a system once a lot of
code has been built upon it.

Architectural work is a form of design, but it is separate from the module
design phase, and distinct from low-level code design, although it certainly
overlaps somewhat. Later work on detailed design may feed changes back up
to the system architecture. This is natural and healthy.

What Is It Used For?

Architecture is the initial system design. But its uses stretch even further. We
use the system architecture to:

Validate
The architecture is our first chance to validate what is going to be built.
With it, we can mentally check that the system will meet all requirements.
We can check that it really is feasible to build. We can ensure that the
design is internally consistent and hangs together well with no special
cases or gratuitous hacks. Nasty blemishes in the high-level design will
only lead to more dangerous hacks at lower levels.

The architecture helps to ensure that there is no duplication of work,
wasted effort, or redundancy. We use it to check that there are no gaps in
the strategy, that we have included all the necessary pieces. We ensure
that there will be no mismatches as separate sections are brought together.

Communicate
We use the architecture specification to communicate the design to all
interested parties. These may be system designers, implementers, main-
tainers, testers, customers, or managers. It’s the primary route to under-
stand the system and is an important piece of documentation that should
always be kept up to date as changes are made.

W H O S E J O B ?

We’ve seen that software architecture affects everyone on the project—not just the
programmers. In contrast, the architecture is determined by a far smaller group of
people. What a responsibility.

The architecture designer is called a software architect. This is a grandiose title
and, like engineer, somewhat contentious. “Real” architects must study, qualify, and
reach levels of professional excellence to even be called architects. There are no such
requirements in the software world.

Software architects are among the project initiators, working right at the beginning
of the development cycle. As development ramps up, programmers will join the
effort to implement this established architecture.

However, on smaller projects requiring less specialized architectural experience,
the programmers themselves will devise the architecture. No big guns are drafted in.
Be ready to contribute to architectural design.

266 Chapter 14

KEY CONCEPT An architecture specification is an essential device to communicate the shape of your
system. Ensure that you keep it in sync with the software.

The architecture conveys the vision of your system, mapping the
problem domain to the solution domain. It should neatly identify how
future extensions fit in, helping to maintain the system’s conceptual
integrity. (Brooks 95) It implicitly provides a set of conventions and
contains an element of style. For example, it’s clear that you shouldn’t
introduce a new component with custom socket-based communication if
the rest of the design uses a CORBA infrastructure.

The architecture provides a natural route into the next level of
design without being too prescriptive.

Discriminate
We use the architecture to help us make decisions. For example, it
identifies build versus buy decisions, determines whether a database is
required, and clarifies the error-handling strategy. It will flag problem
areas, areas of particular risk on the project, and help us plan to mini-
mize this risk. Just as an architect’s primary goal is to ensure his building
stays up when it’s built—under all expected conditions (and some unusual
conditions too)—so should we ensure the resillience of our software
structure. A little wind or extra load shouldn’t topple the thing over.

We need this systemwide perspective to make the appropriate trade-
offs, ensuring that the design meets its required properties. These import-
ant issues are considered at the beginning rather than grafted in toward
the end of development.

KEY CONCEPT Make all software design decisions in the context of the architecture. Always check that
you’re working in line with the system vision and strategy. Don’t create a little wart on
the side that doesn’t complement anything else.

Of Components and Connections
Architecture mostly concerns itself with components and connections. It deter-
mines the number and type of each.

Components

Architecture captures information about each component, whatever component
means in the architecture’s context. It could be an object, a process, a library,
a database, or a third party product. Each of the system’s components is
identified as a clear and logical unit. Each performs one task and does it well.
No component includes a kitchen sink unless there’s a specific kitchen-sink
module.

While it won’t dwell on component implementation issues, the architec-
ture will describe all exposed facilities and perhaps the important externally
visible interfaces. It defines the visibility of the component: what it can see
and what it can’t, and what can see it and what can’t. Different architectural
styles imply different visibility rules, as we’ll see later.

Sof tware Archi tec ture 267

Connections

The architecture identifies all the inter-component connections and
describes the connection properties. A connection may be a simple function
call or data flow through a pipe. It may be an event handler or a message
passing through some OS or network mechanism. A connection can be
synchronous (blocking the caller until the implementation has completed the
request) or asynchronous (returning control to the caller immediately and
arranging for a reply to be posted back at a later date). This is important,
since it affects the flow of control around the system.

Some communication is indirect (and consequently quite subtle). For
example, components can share certain resources and talk through them—
rather like posting messages on a shared whiteboard. Examples of shared
communication channels are: a subordinate component, a shared memory
region, or something as basic as the contents of a file.

A R C H I T E C T S V S . M A R K E T E R S

An architecture is inadequate if it doesn’t fulfill the product requirements for initial
deployment or any future development; design quality is about more than just technical
excellence. Technical issues must be addressed alongside product management and
marketing considerations.

There is no point in developing a product that no one wants; it would obviously
be a huge waste of time. But you can miss vital business opportunities by omitting
marketing requirements from technical consideration. The marketing department
identifies core business objectives including sales strategies (do you charge a one-off
fee or employ a licensing/billing model?), the product’s position in the marketplace
(is it a high-end, feature-packed, high-cost product or a cheap, mass-produced item?),
and the importance of a unique brand running through the system.

In some situations, visibly good architecture may be a unique selling point and
may provide a strong competitive advantage. Other markets care less about the
internal system structure, but an architecture that anticipates and handles future
customer requirements is still essential to establish and maintain a strong market
position.

Technical architects must work closely with the marketing decision makers to
understand how new software will fit into the company’s overall strategy and what
the customer requires for a truly exceptional solution. The software architecture will
address marketing issues such as usability, reliability, upgradeablity, and extensibility.
Each of these has a real influence on the software design. Support for different charg-
ing methods alone may have a huge impact on the profitability of the project—the
inclusion of rich logging support will pave the way for per-transaction billing, which
may lead to increased product revenue. However, it may mandate the inclusion of
additional security and fraud-prevention measures in the architectural planning.

Marketing requirements feed into the technical architecture. Technical considera-
tions will also feed back to the marketing strategy. A truly great architecture is born
when technical and strategic visions meet to create a product that stands out from its
competitors.

268 Chapter 14

What Is Good Architecture?

The key to good architecture is simplicity. A few well-chosen modules and
sensible communication paths are the aim. It also needs to be comprehensible,
which often means visually represented. We all know that a picture speaks a
thousand words.

KEY CONCEPT Good system architecture is simple. It can be described in a single paragraph and sum-
marized in one elegant diagram.

In a well-designed system, there should be neither too few nor too many
components. This criterion scales with the size of the problem. For a small
program, the architecture may fit on (or even be done on) the back of an
envelope, with just a few modules and some simple interconnections. A large
system naturally requires more effort and more envelopes.

Too many fine-grained components lead to an architecture that is bewilder-
ing and hard to work with. It implies that the architect has gone into too much
detail. Too few components means that each module is doing far too much
work; this makes the structure unclear, hard to maintain, and hard to extend.
The correct balance is somewhere between the two.

The architecture does not dictate the inner workings of each module—
that’s what module design is for. The goal is that each module should know
very little about the other parts of the system. We aim for low coupling and
high cohesion (see “Modularity” on page 247) at this level of design, as with
all others.

KEY CONCEPT Architecture identifies the key components of the system and how they interact. It
doesn’t define how they work.

The architecture specification lists the design decisions made and makes
it clear why this approach is being favored over any alternative strategies. It
doesn’t need to labor these other approaches, but should justify the chosen
architecture and prove that some serious thought went into it. It must have
correctly identified the primary goal of the system: For example, extensibility is
a different game from performance and will lead to different architectural
design decisions.

A good architecture leaves room for maneuverability; it allows you to
change your mind. It may specify that we wrap third party components with
abstract interfaces so we can swap one version out for another. It may suggest
technologies that make it easy to select different implementations during
deployment. As a project gains momentum, the correct implementation
choices become clear—they aren’t always obvious at first. A successful archi-
tecture is flexible, providing a mechanism for nimble design during these
initial uncertainties. The architecture is the first pivot on which to balance
contending forces; it will show how we trade one quality for another.

KEY CONCEPT A good architecture leaves space for maneuverability, extension, and modification.
But it isn’t hopelessly general.

The architecture must be clear and unambiguous. Preexisting, well-
known architectural styles or well-known frameworks are best (see the

Sof tware Archi tec ture 269

next section for more on these). Architecture must be easy to understand
and work with.

Like a good design, good architecture has a certain aesthetic appeal that
makes it feel right.

Architectural Styles

Form ever follows function.
—Louis Henry Sullivan

Just as an immense gothic cathedral and a quaint Victorian chapel, or an
imposing tower block and a 1970s public lavatory employ different archi-
tectural styles, there are a number of recognized software architectural styles
that a system may be built upon. A style may be chosen for various reasons,
good or bad—perhaps on sound technological grounds, or perhaps based
on the architect’s prior experience, perhaps even by what style is currently in
fashion. Each architecture has different characteristics:

Its resilience to changes in the data representation, algorithms, and
required functionality

Its method of module separation and connection

Its comprehensibility

Its accommodation of performance requirements

Its consideration of component reusability

In practice, we might see a mixture of architectural styles in one system.
Some data processing may progress through a pipe and filter process, while
the rest of the system employs a component-based architecture.

KEY CONCEPT Recognize the key architectural styles and appreciate their pros and cons. This will help
you to sympathetically work with existing software and perform appropriate system
design.

The following sections describe some of the common architectural styles.
And then compare them to pasta.

No Architecture

want to build good software. Not planning an architecture is a surefire way to
doom development before you’ve even started.

A system always has an architecture, but like my
London Underground project, it may not have
a planned architecture. Before long, this state of
affairs becomes an albatross around the neck
of your development team. The resulting
software will be a mess.

Defining an architecture is essential if you

Spaghetti Ball

Architecture
as Pasta:

Messy, uncontrollable,
unmanagable morass of

interwoven gloop.

270 Chapter 14

Layered Architecture

block in the stack. The positions in the stack indicate what lives where, how the
components relate to each other, and which components can “see” which
other components. Blocks may be placed alongside each other on the same
level and can even become tall enough to span two layers.

A famous example of this is the OSI seven-layer reference model for net-
work communication systems. (ISO 84) A more interesting example is the
Goodliffe seven-layer trifle reference model shown in Figure 14-1.

Figure 14-1: The Goodliffe seven-layer
trifle reference model

At the lowest level of the stack, we find the hardware interface, if the
system does indeed interact with physical devices. Otherwise, this level is
reserved for the most basic service, perhaps the OS or a middleware tech-
nology like CORBA. The highest level will likely be occupied by the fancy
interface that the user interacts with. As you rise further up the stack, you
move further away from the hardware, happily insulated by the layers in
between in the same way that the roof of a house doesn’t have to worry
about the magma at the earth’s core.

At any point, you can brush out all the lower layers and slot in a new
implementation of the layer below—the system will function as before. This
is a key point: It means that you can run the same C++ code on any comput-
ing platform that supports your C++ environment. You can swap the hardware
platform without touching your application code—relying on the OS layer
(for example) to swallow the technical differences. Handy.

Higher levels use the public interfaces of the layer directly below.
Whether they can use the public interfaces of the lower levels depends of
your definition of layering. Sometimes the diagram is fiddled to represent

This is probably the most commonly used archi-
tectural style in conceptual views. It describes
the system as a hierarchy of layers, with a
building-block approach. It is a very simple
model to comprehend; even a non-techie
can quickly grasp what it’s telling him.

Each component is represented by a single

Architecture
as Pasta:
Lasagne

Several distinct layers,
arranged one on top of

another.

Almonds Chocolate sprinkles

Double cream

Custard

Raspberry jelly

Fruit pieces

Sponge cake
Sherry

Bowl

Sof tware Archi tec ture 271

this, like the sherry brick in the trifle stack. Whether or not components on
the same layer can interconnect is also not rigidly defined. You certainly can’t
use anything from a higher level; if you break this edict, you no longer have a
layered architecture, just a meaningless diagram drawn in stack form.

As you can see, most layer diagrams are informal. The relative size and
position of boxes gives a clue as to importance of a component, and that is
generally sufficient as an overview. Component connections are implicit, and
the methods of communication irrelevant. (However, this can be a key archi-
tectural concern for the efficiency of the system—you won’t send gigabytes of
data down an RS232 serial port.)

Pipe and Filter Architecture

the computer display or a log file). It’s the old through-the-grapevine tele-
phone game in digital form. The data flows down the pipe, encountering the
various filters en route. The transformations are usually incremental; each
filter does a single simple process and tends to have very little internal state.

The pipe and filter architecture requires a well-defined data structure
between each filter; it has the implicit overhead of repeatedly encoding the
output data for transmission down the pipe and parsing it back again in each
subsequent filter. For this reason, the data stream is usually very simple—just
a plaintext format.

This architecture makes it easy to add functionality by just plugging a
new filter into the pipeline. Its main downside is error handling. It is hard to
determine where an error originated in the pipeline by the time a problem
manifests itself at the sink. It’s cumbersome to pass error codes down the chain
toward the output stage; they need extra encoding and are hard to handle
uniformly over several separate modules. The filters may use a separate error
channel (e.g., stderr), but error messages can get mixed up all too easily.

Client/Server Architecture

This architecture models the logical flow of
data through the system. It is implemented as
a string of sequential modules that each read
some data, process it, and spit it out again. At
the start of the chain is a data generator (maybe
a user interface or perhaps some hardware har-
vesting logic). At the end is a data sink (perhaps

A typically network-based architecture, the
client/server model separates functionality into
two key pieces: the client and the server. It differs
from the older mainframe style of networked
design in the division of work between each
part; a mainframe “client” is a dumb terminal—
little more than a means to capture and trans-
mit keypresses, with some output display.

Good conduit for its contents,
suits particular situations

very well.

Architecture
as Pasta:

Cannelloni

Architecture
as Pasta:
Gemelli

Two complementary strands,
woven tightly together.

272 Chapter 14

The clients of a client/server architecture are richer, more intelligent, and
generally able to present data in an interactive, graphical manner. Here is a
more detailed look at the role of the two elements:

Server
The server provides certain well-defined services to clients. It will gener-
ally be a powerful computer dedicated to providing specific functionality
or to managing a resource (shared files, printers, a database, or pooled
processing power).

The server waits for requests from clients and responds to them. It
may be able to handle any number of simultaneous client connections or
might be limited to certain usage patterns.

Client
The client consumes a server’s services. It sends off requests and
processes the results that are returned. Some clients are dedicated
terminals which only fulfill one role; other clients serve many

A S L A P I N T H E I N T E R F A C E

A key software construction principle is modularity, designing systems from replace-
able components. This is almost a “LEGO brick” approach to construction. Done
correctly, you should be able to take out a square, blue brick and replace it with
a slightly fancier red one. If the bricks are the same size and shape and have the
same kinds of connector, they will fit into the same hole and do the same job.

How do we implement this in software? We define interfaces; these are our con-
nection points and component barriers. They define the size and shape of each
component (as seen from the outside, at least) and determine what you have to do
to provide a like-for-like replacement. Key types of interfaces are:

APIs
Application programming interfaces (APIs) are specified as collections of functions
in a physically linked application. To replace a component that implements a
particular API, you just reimplement all the functions and relink the code.

Class hierarchies
You can design an abstract “interface” class (in Java and C#, you’d actually define
an interface). Then provide any number of concrete implementations that derive
from it and implement that interface.

Component technologies
Technologies such as COM and CORBA allow your program to determine the
correct implementation component at run time. Typically, interfaces are defined in
an abstract Interface Definition Language (IDL). The beauty of this approach is that
components can be written in any language. It requires middleware or OS support.

Data formats
These formats can form a connection point in designs focused on the movement of
data rather than the flow of control. You can replace any component in the data
chain with an analog that interacts with the same data types.

As you can see, architecture—indeed, most of software design—is about crafting
appropriate interfaces. Each of these interface techniques maps to a particular archi-
tectural style. Pick an interface mechanism that complements the architecture.

Sof tware Archi tec ture 273

functions (for example, a “client” application may run on a standard
desktop PC that can also browse the web and view email).

There can be many different types of clients using one server, all
performing the same set of requests but in different ways. One client
might be web based, one might have a GUI interface, while another might
provide command line access.

This client/server approach is sometimes known as a two-tier architecture,
for obvious reasons. It’s very common and is seen throughout the software
development world. The means of communication between client and server
varies—it’s simplest to use standard network protocols, but you may also see
use of remote procedure calls (RPC), remote SQL database queries, or even
proprietary application-specific protocols.

There are various ways of splitting work between the two components.
The main application logic (also known as business logic) may run on either
the client or server, depending on how intelligent and specialized the client
is supposed to be. As more application logic is pushed down to the client, the
design becomes less flexible—separate clients have to reimplement similar
features, negating the benefit of the central server. Clients are generally con-
cerned with providing sensible human interfaces to the published server
functionality.

We sometimes see an extension of this two-tier design, which introduces
another layer (the middle tier). This component is explicitly designed to contain
the business logic, separating it from both the client application (which is now
most definitely only an interface) and the back-end data storage. This is a three-
tier architecture.

A client/server approach is different from a peer-to-peer architecture,
where no network node has more capability or importance than any other.
Peer-to-peer architectures are harder to deploy but more tolerant of faults.
The client/server design is crippled when the server is unavailable (through
some software fault or routine maintenance): No client will be able to operate
until the server comes back to life. For this reason, client/server installations
generally require a designated administrator to keep all systems running
smoothly.

Component-Based Architecture

Definition Language (IDL) and is separate from any implementation, although
some component technologies (like .NET’s built-in component support) can
determine this from the implementation code itself.

This architecture decentralizes control and splits
it into a number of separate collaborating
components rather than a single monolithic
structure. It is an object-oriented approach,
but doesn’t necessarily require implementation
in an OO language. Each component’s public
interface is typically defined in an Interface

Architecture
as Pasta:

Conchiglie

Separate little bits floating in
some connecting goo.

274 Chapter 14

Component-based design arrived with the lure of assembling applications
quickly out of prefabricated components, supposedly enabling plug-and-play
solutions. It’s still up for debate how much of a success this has been. Not all
components are designed for reuse (it’s hard work), and it’s not always easy
to find a component that does what you want it to do. It’s easiest for UIs, where
popular frameworks and established marketplaces exist.

The core of a component-based architecture is a communication infra-
structure, or middleware, which allows components to be plugged in, to broad-
cast their existence, and to advertise the services they provide. Components
are used by looking up this information through a middleware mechanism,
rather than by hardwiring a direct connection between two components.
Common middleware platforms include CORBA, JavaBeans, and COM;
each have different strengths and weaknesses.

A component1 is essentially an implementation unit. It honors one
(maybe more) specific published IDL interfaces. This interface is how clients
of the component interact with it. There are no back doors. The client is con-
cerned with dealing with an instance of that interface, rather than in how the
component is implemented.

Each component is an individual, independent piece of code. Behind its
interface, it implements some logic (perhaps business logic or user interface
activity) and contains some data, which may just be local or may be published
(say a filestore or database component). Components don’t need to know
much about one another. If they are tightly coupled, then the architecture is
just an obfuscated monolithic system.

Component-based architectures can be deployed in a networked
environment with components on different machines, but they can just as
easily exist as a single machine installation. This may depend on the type of
middleware in use.

Frameworks

of the work in a framework has been done for you, with the remaining
pieces following a fill-in-the-blanks approach. Different frameworks follow
different architectural models; by using a framework, you commit to its
particular style.

1 We’ve already talked about components as modules, ephemeral implementation units. But this
is a new definition for the word, quite specific to the world of component-based architecture.
Sadly, the terms are overloaded with multiple meanings.

Instead of developing a new architecture for a
specific project, it may be appropriate to use
an existing application framework and add devel-
opment into that skeleton. A framework is an
extensible library of code (usually a set of co-
operating classes) that forms a reusable design
solution for a particular problem domain. Most

Architecture
as Pasta:

Canned Ravioli

Most of the work’s already
been done for you. Just heat

and serve.

Sof tware Archi tec ture 275

Frameworks differ from traditional libraries in the way they interact with
your code. When using a library, you make explicit calls into the library com-
ponents under your own thread of control. A framework turns this around; it is
responsible for the structure and flow of control. It calls into your supplied
code as and when necessary.

Sitting alongside off-the-shelf frameworks are architectural design patterns.
While not an architectural style in their own right, patterns are small-scale
architectural templates. They are micro-architectures for a few collaborating
components, distilling a recurring structure of communication. Architectural
patterns describe common component structures at the architectural design
level, explaining how they fulfill the requirements of a given context. Patterns
are a set of design best practices, described in the ubiquitous GoF book
(Gamma et al. 94) and numerous subsequent publications (see “Design
Patterns” on page 255).

In a Nutshell

The Roman architect Vitruvius made a timeless statement of what constitutes
good architectural design: strength (firmitas), utility (utilitas), and beauty
(venustas). (Vitruvius) This holds true for our software architectures. With-
out a well-defined, well-communicated architecture, a software project will
lack a cohesive internal structure. It will become brittle, unstable, and ugly.
Eventually, it will reach a breaking point.

All this talk of pasta has made me hungry. I’m off to build a seven-layer
reference trifle. . . .

Good programmers . . . Bad programmers . . .

Understand their software
architecture and write new
code within it

Can apply the appropriate
architecture to each design
scenario

Create simple architectures
that are beautiful and ele-
gant—they appreciate the
aesthetics of software design

Capture the system architec-
ture in a live document that is
continuously updated

Relay problems with the
structure back to the system
architects in an attempt to
improve the design

Write code regardless of any overall
architectural vision—resulting in
unsympathetic blemishes and unin-
tegrated components

Fail to perform any high-level design
before ploughing into code, ignor-
ing any architectural alternatives

Leave architectural information
locked inaccessibly in people’s
heads or in a dangerously out-of-
date specification

Put up with inadequate architec-
tures, adding more badly designed
code rather than fixing the under-
lying problems—they can’t be
bothered to open a larger can
of worms

276 Chapter 14

See Also

Chapter 12: An Insecurity Complex
Security concerns must be addressed by a system architecture.

Chapter 13: Grand Designs
Code design is the subsequent level of code construction.

Chapter 15: Software Evolution or Software Revolution?
Architecture is the start of your software’s life, but it is by no means the
only thing that steers its development.

Chapter 22: Recipe for a Program
Where architectural design fits into the software development process.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 522.

Mull It Over

1. Define where architecture ends and software design begins.

2. In what ways can a bad architecture affect a system? Are there parts that
wouldn’t be affected by architectural flaws?

3. How easy is it to repair architectural deficiencies once they become
apparent?

4. To what extent does architecture affect the following things?

a. System configuration

b. Logging

c. Error handling

d. Security

Sof tware Archi tec ture 277

5. What experience or qualifications are required to be called a software
architect?

6. Should sales strategy influence architecture? If so, how? If not, why?

7. How would you architect for extensibility? How would you architect for
performance? How do these design goals affect the system, and how do
they complement one another?

Getting Personal

1. How diverse is the range of architectural styles to which you are
accustomed? What do you have the most experience with—how does
it affect the software you write?

2. What personal experience do you have of architectures that succeeded
or failed? What made them winning solutions or a hindrances?

3. Get every developer on your current project to draw a picture of the
system architecture—individually (without talking to anyone) and
without any reference to system documentation or the code. Compare
the pictures. See what strikes you about each developer’s efforts—aside
from the relative artistic merit!

4. Do you have an architectural description that’s commonly available for
your current project? How up to date is it? Which kinds of view are you
using? If you needed to explain the system to a newcomer or a potential
customer, what would you really need to have documented?

5. How does your system’s architecture compare to the architecture of your
competitors in the marketplace? How has your architecture been
defined to determine your project’s success?

