
Class Exercises: Macros

1. Write a Clojure macro called bif (bound if ) that has the following syntax:

(bif variable condition-part

then-part

else-part)

This macro evaluates condition-part, binds the result to variable and, if it’s a truthy value, evaluates and
returns then-part, otherwise evaluates and returns else-part. The scope of variable includes then-part and
else-part. In other words, the bif macro expands to the following code:

(let [variable condition-part]

(if variable

then-part

else-part))

Examples:

(macroexpand-1

’(bif q (first ’(4 8 15))

(inc q)

(list q)))

=> (clojure.core/let [q (first (quote (4 8 15)))] (if q (inc q) (list q)))

(bif q (first ’(4 8 15))

(inc q)

(list q))

=> 5

(bif q (first ())

(inc q)

(list q))

=> (nil)



2. Write a Clojure macro called def-vars that receives a symbol var-name and zero or more expressions. This
macro defines as many global variables as the provided number of expressions. The value of var-name is the
name prefix for all these variables. The suffix is “0” for the first variable name, which is initialized with the
first expression. The next variable name has a “1” suffix and is initialized with the second expression, and so
on with all the remaining variables.

For example, the expression:

(def-vars x (+ 1 2) 3 (* 2 2))

should macroexpand to:

(do

(def x0 (+ 1 2))

(def x1 3)

(def x2 (* 2 2)))

When the macro is evaluated, variables x0, x1 and x2 should be defined. Thus:

(+ x0 x1 x2)

=> 10

These are some functions you might find usefull:

(str ’foo 123)

=> "foo123"

(symbol "foo123")

=> foo123



3. Write a Clojure macro called def-many. This macro allows defining many global bindings in one place. It has
the following form:

(def-many var1 expr1 var2 expr2 . . . varn exprn)

Where every vari is a symbol and every expri is an arbitrary expression. The macro evaluates expr1 and binds
the result to var1 (using the def special form), then evaluates expr2 and binds the result to var2, and so on.

The macro expands to the following form:

(do

(def var1 expr1)

(def var2 expr2)
...

(def varn exprn))

Examples:

(macroexpand-1 ’(def-many a (+ 1 2)

b (* 2 a)

c (/ (inc b) a)))

=> (do

(def a (+ 1 2))

(def b (* 2 a))

(def c (/ (inc b) a)))

(def-many a (+ 1 2)

b (* 2 a)

c (/ (inc b) a))

(+ a b c)

=> 34/3



4. Write a Clojure macro called nth-expr. This macro only evaluates the n-th item of a series of expressions.
It has the following form:

(nth-expr nth expr0 expr1 . . . exprk)

The macro evaluates the expression nth, if it’s equal to 0 it returns the result of evaluating expr0, otherwise,
if it’s equal to 1 it returns the result of evaluating expr1, and so on. Only one of expr0, expr1, . . ., exprk
is actually evaluated, the rest of the expressions are ignored. A runtime exception is thrown if the result of
evaluating nth is not an integer between 0 and k.

The macro expands to the following case form:

(case nth

0 expr0
1 expr1
...
k exprk
(throw (RuntimeException. "Bad nth value!")))

Examples:

(macroexpand-1 ’(nth-expr (- 5 4) (* 2 3) (- 5 2) (+ 7 2) (/ 20 2)))

=> (clojure.core/case (- 5 4)

0 (* 2 3)

1 (- 5 2)

2 (+ 7 2)

3 (/ 20 2)

(throw (java.lang.RuntimeException. "Bad nth value!")))

(nth-expr (- 5 4) (* 2 3) (- 5 2) (+ 7 2) (/ 20 2))

=> 3

(nth-expr :wat 0 1 2 3 4 5)

=> RuntimeException Bad nth value!


