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Chapter 1
Introduction 
to Multi-Core 
Architecture 

 

n 1945, mathematician John von Neumann, with the aid of J. Presper 
Eckert and John Mauchly, wrote a memo proposing the creation of an 

Electronic Discrete Variable Automatic Computer, more famously known 
as the EDVAC. In this paper, von Neumann suggested the stored-program 
model of computing. In the von Neumann architecture, a program is a 
sequence of instructions stored sequentially in the computer’s memory. 
The program’s instructions are executed one after the other in a linear, 
single-threaded fashion. 

As time went on, advancements in mainframe technology expanded 
upon the ideas presented by von Neumann. The 1960s saw the advent of 
time-sharing operating systems. Run on large mainframe computers, 
these operating systems first introduced the concept of concurrent 
program execution. Multiple users could access a single mainframe 
computer simultaneously and submit jobs for processing. From the 
program’s perspective, it was the only process in the system. The operating 
system handled the details of allocating CPU time for each individual 
program. At this time, concurrency existed at the process level, and the 
job of task switching was left to the systems programmer. 

In the early days of personal computing, personal computers, or PCs, 
were standalone devices with simple, single-user operating systems. Only 
one program would run at a time. User interaction occurred via simple 
text based interfaces. Programs followed the standard model of straight-
line instruction execution proposed by the von Neumann architecture. 
Over time, however, the exponential growth in computing performance 
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2 Multi-Core Programming 

quickly led to more sophisticated computing platforms. Operating system 
vendors used the advance in CPU and graphics performance to develop 
more sophisticated user environments. Graphical User Interfaces, or GUIs, 
became standard and enabled users to start and run multiple programs in 
the same user environment. Networking on PCs became pervasive. 

This rapid growth came at a price: increased user expectations. Users 
expected to be able to send e-mail while listening to streaming audio that 
was being delivered via an Internet radio station. Users expected their 
computing platform to be quick and responsive. Users expected 
applications to start quickly and handle inconvenient background tasks, 
such as automatically saving a file with minimal disruption. These 
challenges are the problems that face software developers today. 

 Motivation for Concurrency in Software 

Most end users have a simplistic view of complex computer systems. 
Consider the following scenario: A traveling businessman has just come 
back to his hotel after a long day of presentations. Too exhausted to go out, 
he decides to order room service and stay in his room to watch his favorite 
baseball team play. Given that he’s on the road, and doesn’t have access to 
the game on his TV, he decides to check out the broadcast via the Internet. 
His view of the system might be similar to the one shown in Figure 1.1. 

 

Figure 1.1 End User View of Streaming Multimedia Content via the Internet 

The user’s expectations are based on conventional broadcast delivery 
systems which provide continuous, uninterrupted delivery of content. The 
user does not differentiate between streaming the content over the Internet 
and delivering the data via a broadcast network. To the user, watching a 
baseball game on a laptop seems like a simple, straightforward task. 
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The reality is that the implementation of such a system is far more 
difficult. From the client side, the PC must be able to download the 
streaming video data, decompress/decode it, and draw it on the video 
display. In addition, it must handle any streaming audio that accompanies 
the video stream and send it to the soundcard. Meanwhile, given the 
general purpose nature of the computer, the operating system might be 
configured to run a virus scan or some other system tasks periodically. 
On the server side, the provider must be able to receive the original 
broadcast, encode/compress it in near real-time, and then send it over 
the network to potentially hundreds of thousands of clients. A system 
designer who is looking to build a computer system capable of streaming 
a Web broadcast might look at the system as it’s shown in Figure 1.2. 

 

Figure 1.2 End-to-End Architecture View of Streaming Multimedia Content 
over the Internet 

Contrast this view of a streaming multimedia delivery service with 
the end user’s perspective of the system shown in Figure 1.1. In order to 
provide an acceptable end-user experience, system designers must be 
able to effectively manage many independent subsystems that operate in 
parallel.  

Careful inspection of Figure 1.2 shows that the problem of streaming 
media content may be broken into a number of disparate parts; each acting 
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independently1 from one another. This decomposition allows us to break 
down each task into a single isolated problem, making the problem much 
more manageable. 

Concurrency in software is a way to manage the sharing of resources 
used at the same time. Concurrency in software is important for several 
reasons: 

 Concurrency allows for the most efficient use of system resources. 
Efficient resource utilization is the key to maximizing perform-
ance of computing systems. Unnecessarily creating dependencies 
on different components in the system drastically lowers overall 
system performance. In the aforementioned streaming media example, 
one might naively take this, serial, approach on the client side: 

1. Wait for data to arrive on the network 

2. Uncompress the data 

3. Decode the data 

4. Send the decoded data to the video/audio hardware 

This approach is highly inefficient. The system is completely idle 
while waiting for data to come in from the network. A better 
approach would be to stage the work so that while the system is 
waiting for the next video frame to come in from the network, 
the previous frame is being decoded by the CPU, thereby improving 
overall resource utilization. 

 Many software problems lend themselves to simple concurrent 
implementations. Concurrency provides an abstraction for 
implementing software algorithms or applications that are naturally 
parallel. Consider the implementation of a simple FTP server. 
Multiple clients may connect and request different files. A single-
threaded solution would require the application to keep track 
of all the different state information for each connection. A 
more intuitive implementation would create a separate thread for 
each connection. The connection state would be managed by this 
separate entity. This multi-threaded approach provides a solution 
that is much simpler and easier to maintain. 

It’s worth noting here that the terms concurrent and parallel are not 
interchangeable in the world of parallel programming. When multiple 

                                                                      
1 The term “independently” is used loosely here. Later chapters discuss the managing of 

interdependencies that is inherent in multi-threaded programming. 



Chapter 1: Introduction to Multi-Core Architecture 5 

software threads of execution are running in parallel, it means that the 
active threads are running simultaneously on different hardware 
resources, or processing elements. Multiple threads may make progress 
simultaneously. When multiple software threads of execution are 
running concurrently, the execution of the threads is interleaved onto a 
single hardware resource. The active threads are ready to execute, but 
only one thread may make progress at a given point in time. In order to 
have parallelism, you must have concurrency exploiting multiple 
hardware resources.  

 Parallel Computing Platforms  

In order to achieve parallel execution in software, hardware must 
provide a platform that supports the simultaneous execution of multiple 
threads. Generally speaking, computer architectures can be classified by 
two different dimensions. The first dimension is the number of 
instruction streams that a particular computer architecture may be able 
to process at a single point in time. The second dimension is the number 
of data streams that can be processed at a single point in time. In this 
way, any given computing system can be described in terms of how 
instructions and data are processed. This classification system is known 
as Flynn’s taxonomy (Flynn, 1972), and is graphically depicted in 
Figure 1.3. 

 

Figure 1.3 Flynn’s Taxonomy 
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Flynn’s taxonomy places computing platforms in one of four 
categories:  

 A single instruction, single data (SISD) machine is a traditional 
sequential computer that provides no parallelism in hardware. 
Instructions are executed in a serial fashion. Only one data stream 
is processed by the CPU during a given clock cycle. Examples of 
these platforms include older computers such as the original IBM 
PC, older mainframe computers, or many of the 8-bit home 
computers such as the Commodore 64 that were popular in the 
early 1980s.  

 A multiple instruction, single data (MISD) machine is capable of 
processing a single data stream using multiple instruction streams 
simultaneously. In most cases, multiple instruction streams need 
multiple data streams to be useful, so this class of parallel 
computer is generally used more as a theoretical model than a 
practical, mass-produced computing platform.  

 A single instruction, multiple data (SIMD) machine is one in 
which a single instruction stream has the ability to process 
multiple data streams simultaneously. These machines are useful 
in applications such as general digital signal processing, image 
processing, and multimedia applications such as audio and video. 
Originally, supercomputers known as array processors or vector 
processors such as the Cray-1 provided SIMD processing 
capabilities. Almost all computers today implement some form of 
SIMD instruction set. Intel processors implement the MMX™, 
Streaming SIMD Extensions (SSE), Streaming SIMD Extensions 2 
(SSE2), and Streaming SIMD Extensions 3 (SSE3) instructions that 
are capable of processing multiple data elements in a single clock. 
The multiple data elements are stored in the floating point 
registers. PowerPC† processors have implemented the AltiVec 
instruction set to provide SIMD support.  

 A multiple instruction, multiple data (MIMD) machine is capable 
of is executing multiple instruction streams, while working on a 
separate and independent data stream. This is the most common 
parallel computing platform today. New multi-core platforms 
such as the Intel® Core™ Duo processor fall into this category.  

Given that modern computing machines are either the SIMD or MIMD 
machines, software developers have the ability to exploit data-level and 
task level parallelism in software.  
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Parallel Computing in Microprocessors 

In 1965, Gordon Moore observed that the number of transistors available 
to semiconductor manufacturers would double approximately every 18 
to 24 months. Now known as Moore’s law, this observation has guided 
computer designers for the past 40 years. Many people mistakenly think 
of Moore’s law as a predictor of CPU clock frequency, and it’s not really 
hard to understand why. The most commonly used metric in measuring 
computing performance is CPU clock frequency. Over the past 40 years, 
CPU clock speed has tended to follow Moore’s law. It’s an important 
distinction to make, however, as taking this view of Moore’s law 
imposes unnecessary limits on a silicon designer. While improving 
straight-line instruction throughput and clock speeds are goals worth 
striving for, computer architects can take advantage of these extra 
transistors in less obvious ways. 

For example, in an effort to make the most efficient use of processor 
resources, computer architects have used instruction-level parallelization 
techniques to improve processor performance. Instruction-level parallelism 
(ILP), also known as dynamic, or out-of-order execution, gives the CPU the 
ability to reorder instructions in an optimal way to eliminate pipeline stalls. 
The goal of ILP is to increase the number of instructions that are executed 
by the processor on a single clock cycle2. In order for this technique to be 
effective, multiple, independent instructions must execute. In the case of 
in-order program execution, dependencies between instructions may limit 
the number of instructions available for execution, reducing the amount of 
parallel execution that may take place. An alternative approach that 
attempts to keep the processor’s execution units full is to reorder the 
instructions so that independent instructions execute simultaneously. In 
this case, instructions are executed out of program order. This dynamic 
instruction scheduling is done by the processor itself. You will learn much 
more about these techniques in a later chapter, but for now what is 
important to understand is that this parallelism occurs at the hardware level 
and is transparent to the software developer. 

As software has evolved, applications have become increasingly 
capable of running multiple tasks simultaneously. Server applications 
today often consist of multiple threads or processes. In order to support 
this thread-level parallelism, several approaches, both in software and 
hardware, have been adopted.  

                                                                      
2 A processor that is capable of executing multiple instructions in a single clock cycle is known as a 

super-scalar processor.  
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One approach to address the increasingly concurrent nature of modern 
software involves using a preemptive, or time-sliced, multitasking operating 
system. Time-slice multi-threading allows developers to hide latencies 
associated with I/O by interleaving the execution of multiple threads. This 
model does not allow for parallel execution. Only one instruction stream 
can run on a processor at a single point in time.  

Another approach to address thread-level parallelism is to increase 
the number of physical processors in the computer. Multiprocessor 
systems allow true parallel execution; multiple threads or processes run 
simultaneously on multiple processors. The tradeoff made in this case is 
increasing the overall system cost.  

As computer architects looked at ways that processor architectures 
could adapt to thread-level parallelism, they realized that in many cases, 
the resources of a modern processor were underutilized. In order to 
consider this solution, you must first more formally consider what a 
thread of execution in a program is. A thread can be defined as a basic 
unit of CPU utilization. It contains a program counter that points to the 
current instruction in the stream. It contains CPU state information for 
the current thread. It also contains other resources such as a stack.  

A physical processor is made up of a number of different resources, 
including the architecture state—the general purpose CPU registers and 
interrupt controller registers, caches, buses, execution units, and branch 
prediction logic. However, in order to define a thread, only the 
architecture state is required. A logical processor can thus be created by 
duplicating this architecture space. The execution resources are then 
shared among the different logical processors. This technique is known 
as simultaneous multi-threading, or SMT. Intel’s implementation of SMT 
is known as Hyper-Threading Technology, or HT Technology. HT 
Technology makes a single processor appear, from software’s 
perspective, as multiple logical processors. This allows operating systems 
and applications to schedule multiple threads to logical processors as 
they would on multiprocessor systems. From a microarchitecture 
perspective, instructions from logical processors are persistent and 
execute simultaneously on shared execution resources. In other words, 
multiple threads can be scheduled, but since the execution resources are 
shared, it’s up to the microarchitecture to determine how and when to 
interleave the execution of the two threads. When one thread stalls, 
another thread is allowed to make progress. These stall events include 
handling cache misses and branch mispredictions. 

The next logical step from simultaneous multi-threading is the multi-core 
processor. Multi-core processors use chip multiprocessing (CMP). Rather 
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than just reuse select processor resources in a single-core processor, 
processor manufacturers take advantage of improvements in manufacturing 
technology to implement two or more “execution cores” within a single 
processor. These cores are essentially two individual processors on a single 
die. Execution cores have their own set of execution and architectural 
resources. Depending on design, these processors may or may not share a 
large on-chip cache. In addition, these individual cores may be combined 
with SMT; effectively increasing the number of logical processors by twice 
the number of execution cores. The different processor architectures are 
highlighted in Figure 1.4. 

 

                    
  A) Single Core                              B) Multiprocessor 

   
  C) Hyper-Threading Technology    D) Multi-core 

 
            E) Multi-core with Shared Cache 

 
           F) Multi-core with Hyper-Threading Technology 

 

Figure 1.4 Simple Comparison of Single-core, Multi-processor, and Multi-Core 
Architectures  
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Differentiating Multi-Core Architectures from Hyper-Threading Technology 

With HT Technology, parts of the one processor are shared between threads, 
while other parts are duplicated between them. One of the most important 
shared resources is the actual execution engine. This engine works on both 
threads at the same time by executing instructions for one thread on 
resources that the other thread is not using. When both threads are running, 
HT Technology literally interleaves the instructions in the execution pipeline. 
Which instructions are inserted when depends wholly on what execution 
resources of the processor are available at execution time. Moreover, if one 
thread is tied up reading a large data file from disk or waiting for the user to 
type on the keyboard, the other thread takes over all the processor 
resources—without the operating system switching tasks—until the first 
thread is ready to resume processing. In this way, each thread receives the 
maximum available resources and the processor is kept as busy as possible. 
An example of a thread running on a HT Technology enabled CPU is shown 
in Figure 1.5. 

 

Figure 1.5 Two Threads Executing on a Processor with Hyper-Threading 
Technology 

HT Technology achieves performance gains through latency hiding. 
Fundamentally, a single execution core is shared among multiple threads. 
Therefore, thread execution is not parallel. As a result, performance results 
vary based on application and hardware platform. With HT Technology, in 
certain applications, it is possible to attain, on average, a 30-percent increase 
in processor throughput. In other words, in certain cases, the 
processor can perform 1.3 times the number of executed instructions 
that it could if it were running only one thread. To see a performance 
improvement, applications must make good use of threaded 
programming models and of the capabilities of Hyper-Threading 
Technology. 



Chapter 1: Introduction to Multi-Core Architecture 11 

The performance benefits of HT Technology depend on how much 
latency hiding can occur in your application. In some applications, 
developers may have minimized or effectively eliminated memory 
latencies through cache optimizations. In this case, optimizing for HT 
Technology may not yield any performance gains.  

On the other hand, multi-core processors embed two or more 
independent execution cores into a single processor package. By providing 
multiple execution cores, each sequence of instructions, or thread, has a 
hardware execution environment entirely to itself. This enables each thread 
run in a truly parallel manner. An example of two threads running on a 
dual-core processor is shown in Figure 1.6. Compare this with the HT 
Technology example provided in Figure 1.5, and note that a dual-core 
processor provides true parallel execution of each thread. 

  

Figure 1.6 Two Threads on a Dual-Core Processor with each Thread Running 
Independently 

It should be noted that HT Technology does not attempt to deliver 
multi-core performance, which can theoretically be close to a 100-percent, 
or 2x improvement in performance for a dual-core system. HT Technology 
is more of a facility in which the programmer may be able to use idle CPU 
resources in order to accomplish more work. When combined with multi-
core technology, HT Technology can provide powerful optimization 
opportunities, increasing system throughput substantially. 

Multi-threading on Single-Core versus Multi-Core Platforms 

At this point, many readers may be asking themselves what all the 
commotion is about. The concept of multiple threads in a single process 
space has been around for decades. Most modern applications use 
threads in one fashion or another today. As a result, many developers are 
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already familiar with the concept of threading, and have probably 
worked on applications that have multiple threads. There are however, 
certain important considerations developers should be aware of when 
writing applications targeting multi-core processors: 

 Optimal application performance on multi-core architectures will 
be achieved by effectively using threads to partition software 
workloads. Many applications today use threads as a tool to improve 
user responsiveness on single-core platforms. Rather than blocking 
the user interface (UI) on a time consuming database query or disk 
access, an application will spawn a thread to process the user’s 
request. This allows the scheduler to individually schedule the main 
control loop task that receives UI events as well as the data 
processing task that is running the database query. In this model, 
developers rely on straight-line instruction throughput improvements 
to improve application performance.  

This is the significant limitation of multi-threading on single-core 
processors. Since single-core processors are really only able to 
interleave instruction streams, but not execute them simultaneously, 
the overall performance gains of a multi-threaded application on 
single-core architectures are limited. On these platforms, threads are 
generally seen as a useful programming abstraction for hiding latency.  

This performance restriction is removed on multi-core architectures. 
On multi-core platforms, threads do not have to wait for any one 
resource. Instead, threads run independently on separate cores. As an 
example, consider two threads that both wanted to execute a shift 
operation. If a core only had one “shifter unit” they could not run in 
parallel. On two cores, there would be two “shifter units,” and each 
thread could run without contending for the same resource. 

Multi-core platforms allow developers to optimize applications by 
intelligently partitioning different workloads on different processor 
cores. Application code can be optimized to use multiple processor 
resources, resulting in faster application performance.  

 Multi-threaded applications running on multi-core platforms have 
different design considerations than do multi-threaded applications 
running on single-core platforms. On single-core platforms, 
assumptions may be made by the developer to simplify writing and 
debugging a multi-threaded application. These assumptions may not be 
valid on multi-core platforms. Two areas that highlight these differences 
are memory caching and thread priority.  
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In the case of memory caching, each processor core may have its 
own cache.3 At any point in time, the cache on one processor core 
may be out of sync with the cache on the other processor core. To 
help illustrate the types of problems that may occur, consider the 
following example. Assume two threads are running on a dual-core 
processor. Thread 1 runs on core 1 and thread 2 runs on core 2. The 
threads are reading and writing to neighboring memory locations. 
Since cache memory works on the principle of locality, the data 
values, while independent, may be stored in the same cache line. As a 
result, the memory system may mark the cache line as invalid, even 
though the data that the thread is interested in hasn’t changed. This 
problem is known as false sharing. On a single-core platform, there 
is only one cache shared between threads; therefore, cache 
synchronization is not an issue. 

Thread priorities can also result in different behavior on single-core 
versus multi-core platforms. For example, consider an application 
that has two threads of differing priorities. In an attempt to improve 
performance, the developer assumes that the higher priority thread 
will always run without interference from the lower priority thread. 
On a single-core platform, this may be valid, as the operating system’s 
scheduler will not yield the CPU to the lower priority thread. 
However, on multi-core platforms, the scheduler may schedule both 
threads on separate cores. Therefore, both threads may run 
simultaneously. If the developer had optimized the code to assume 
that the higher priority thread would always run without interference 
from the lower priority thread, the code would be unstable on multi-
core and multi-processor systems. 

One goal of this book is to help developers correctly utilize the number 
of processor cores they have available. 

  Understanding Performance 

At this point one may wonder—how do I measure the performance 
benefit of parallel programming? Intuition tells us that if we can 
subdivide disparate tasks and process them simultaneously, we’re likely 

                                                                      
3 Multi-core CPU architectures can be designed in a variety of ways: some multi-core CPUs will share the 

on-chip cache between execution units; some will provide a dedicated cache for each execution core; 
and others will take a hybrid approach, where the cache is subdivided into layers that are dedicated to a 
particular execution core and other layers that are shared by all execution cores. For the purposes of 
this section, we assume a multi-core architecture with a dedicated cache for each core.  
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to see significant performance improvements. In the case where the tasks 
are completely independent, the performance benefit is obvious, but 
most cases are not so simple. How does one quantitatively determine the 
performance benefit of parallel programming? One metric is to compare 
the elapsed run time of the best sequential algorithm versus the elapsed 
run time of the parallel program. This ratio is known as the speedup and 
characterizes how much faster a program runs when parallelized.  

_ _

_
=tSpeedup(n )

( )

best sequential algorithm

parallel implementation t

Time

Time n
 

Speedup is defined in terms of the number of physical threads (n
t
) 

used in the parallel implementation.  

Amdahl’s Law 

Given the previous definition of speedup, is there a way to determine the 
theoretical limit on the performance benefit of increasing the number of 
processor cores, and hence physical threads, in an application? When 
examining this question, one generally starts with the work done by 
Gene Amdahl in 1967. His rule, known as Amdahl’s Law, examines the 
maximum theoretical performance benefit of a parallel solution relative 
to the best case performance of a serial solution. 

Amdahl started with the intuitively clear statement that program 
speedup is a function of the fraction of a program that is accelerated and 
by how much that fraction is accelerated.  

=
− +

1
Speedup

(1 Fraction ) (Fraction /Speedup )Enhanced Enhanced Enhanced
 

So, if you could speed up half the program by 15 percent, you’d get: 
/ /= − + = + =Speedup 1 ((1 .50) (.50/1.15)) 1 (.50 .43) 1.08  

This result is a speed increase of 8 percent, which is what you’d expect. 
If half of the program is improved 15 percent, then the whole program is 
improved by half that amount. 

Amdahl then went on to explain how this equation works out if you 
make substitutions for fractions that are parallelized and those that are 
run serially, as shown in Equation 1.1. 
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Equation 1.1 Amdahl’s Law 

Speedup = 
+ −

1

(1 )/S S n
 

 
 

In this equation, S is the time spent executing the serial portion of the 
parallelized version and n is the number of processor cores. Note that the 
numerator in the equation assumes that the program takes 1 unit of time 
to execute the best sequential algorithm.  

If you substitute 1 for the number of processor cores, you see that no 
speedup is realized. If you have a dual-core platform doing half the work, 
the result is: 

1 / (0.5S + 0.5S/2) = 1/0.75S = 1.33 

or a 33-percent speed-up, because the run time, as given by the 
denominator, is 75 percent of the original run time. For an 8-core 
processor, the speedup is: 

1 / (0.5S + 0.5S/8) = 1/0.75S = 1.78 

Setting n = ∞ in Equation 1.1, and assuming that the best sequential 
algorithm takes 1 unit of time yields Equation 1.2. 

Equation 1.2 Upper Bound of an Application with S Time Spent in Sequential 
Code 

Speedup = 
1

S
 

 
 

As stated in this manner, Amdahl assumes that the addition of processor 
cores is perfectly scalable. As such, this statement of the law shows the 
maximum benefit a program can expect from parallelizing some portion 
of the code is limited by the serial portion of the code. For example, 
according Amdahl’s law, if 10 percent of your application is spent in serial 
code, the maximum speedup that can be obtained is 10x, regardless of the 
number of processor cores.  

It is important to note that endlessly increasing the processor cores only 
affects the parallel portion of the denominator. So, if a program is only 10-
percent parallelized, the maximum theoretical benefit is that the program 
can run in 90 percent of the sequential time.  
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Given this outcome, you can see the first corollary of Amdahl’s 
law: decreasing the serialized portion by increasing the parallelized 
portion is of greater importance than adding more processor cores. For 
example, if you have a program that is 30-percent parallelized running on 
a dual-core system, doubling the number of processor cores reduces run 
time from 85 percent of the serial time to 77.5 percent, whereas 
doubling the amount of parallelized code reduces run time from 85 
percent to 70 percent. This is illustrated in Figure 1.7. Only when a 
program is mostly parallelized does adding more processors help more 
than parallelizing the remaining code. And, as you saw previously, you 
have hard limits on how much code can be serialized and on how many 
additional processor cores actually make a difference in performance. 

 
Performance benefit of doubling
the number of processor cores 

Performance benefit of doubling 
the amount of parallelism in code 

Note: The advantage gained by writing parallel code 

Figure 1.7 Theoretical Performance Comparison between Increasing Number 
of CPU Cores versus Increasing Concurrency in Implementation 

To make Amdahl’s Law reflect the reality of multi-core systems, rather 
than the theoretical maximum, system overhead from adding threads 
should be included: 

Speedup = 
+ − +

1

(1 )/ ( )S S n H n
 

where H(n) = overhead, and again, we assume that the best serial 
algorithm runs in one time unit. Note that this overhead is not linear on a 
good parallel machine.  
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This overhead consists of two portions: the actual operating system 
overhead and inter-thread activities, such as synchronization and other forms 
of communication between threads. Notice that if the overhead is big 
enough, it offsets the benefits of the parallelized portion. In fact, if the 
overhead is large enough, the speedup ration can ultimately have a value of 
less than 1, implying that threading has actually slowed performance when 
compared to the single-threaded solution. This is very common in poorly 
architected multi-threaded applications. The important implication is that 
the overhead introduced by threading must be kept to a minimum. For this 
reason, most of this book is dedicated to keeping the cost of threading as 
low as possible. 

Amdahl’s Law Applied to Hyper-Threading Technology 
The previous section demonstrated Amdahl’s law as it applies to multi-
processor and multi-core systems. Hyper-Threading Technology 
imposes an additional factor on how you apply Amdahl’s Law to your 
code. On processors enabled with HT Technology, the fact that certain 
processor resources are shared between the different threads of 
execution has a direct effect on the maximum performance benefit of 
threading an application. 

Given the interleaved execution environment provided by HT 
Technology, it’s important to develop a form of Amdahl’s law that works 
for HT Technology. Assume that your application experiences a 
performance gain of around 30 percent when run on a processor with 
HT Technology enabled. That is, performance improves by 30 percent 
over the time required for a single processor to run both threads. If you 
were using a quad-core platform, with each processor completely 
dedicated to the thread it was running, the number could, in theory, 
be up to 4x. That is, the second, third, and fourth processor core 
could give a 300-percent boost to program throughput. In practice it’s 
not quite 300 percent, due to overhead and code that cannot be 
parallelized, and the performance benefits will vary based on the 
application. 

Inside the processor enabled with HT Technology, each thread is 
running more slowly than it would if it had the whole processor to itself. 
HT Technology is not a replacement for multi-core processing since 
many processing resources, such as the execution units, are shared. The 
slowdown varies from application to application. As example, assume 
each thread runs approximately one-third slower than it would if it 
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owned the entire processor. Amending Amdahl’s Law to fit HT 
Technology, then, you get: 

SpeedupHTT = 
+ − +

1

0.67((1 )/ ) ( )S S n H n
 

where n = number of logical processors. 
This equation represents the typical speed-up for programs running 

on processor cores with HT Technology performance. The value of H(n) 
is determined empirically and varies from application to application.  

Growing Returns: Gustafson’s Law 

Based on Amdahl’s work, the viability of massive parallelism was 
questioned for a number of years. Then, in the late 1980s, at the Sandia 
National Lab, impressive linear speedups in three practical applications 
were observed on a 1,024-processor hypercube. The results (Gustafson 
1988) demonstrated that near linear speedup was possible in many 
practical cases, even when Amdahl’s Law predicted otherwise.  

Built into Amdahl’s Law are several assumptions that may not hold true 
in real-world implementations. First, Amdahl’s Law assumes that the best 
performing serial algorithm is strictly limited by the availability of CPU 
cycles. This may not be the case. A multi-core processor may implement a 
separate cache on each core. Thus, more of the problem’s data set may be 
stored in cache, reducing memory latency. The second flaw is that 
Amdahl’s Law assumes that the serial algorithm is the best possible 
solution for a given problem. However, some problems lend themselves to 
a more efficient parallel solution. The number of computational steps may 
be significantly less in the parallel implementation.  

Perhaps the biggest weakness, however, is the assumption that 
Amdahl’s Law makes about the problem size. Amdahl’s Law assumes that 
as the number of processor cores increases, the problem size stays the 
same. In most cases, this is not valid. Generally speaking, when given 
more computing resources, the problem generally grows to meet the 
resources available. In fact, it is more often the case that the run time of 
the application is constant.  

Based on the work at Sandia, an alternative formulation for speedup, 
referred to as scaled speedup was developed by E. Barsis.  

Scaled speedup = + −(1 ) *N N s  

where N = is the number of processor cores and s is the ratio of the time 
spent in the serial port of the program versus the total execution time. 
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Scaled speedup is commonly referred to as Gustafson’s Law. From this 
equation, one can see that the speedup in this case is linear.  

Gustafson’s Law has been shown to be equivalent to Amdahl’s Law 
(Shi 1996). However, Gustafson’s Law offers a much more realistic look 
at the potential of parallel computing on multi-core processors.  

 Key Points 

This chapter demonstrated the inherent concurrent nature of many 
software applications and introduced the basic need for parallelism in 
hardware. An overview of the different techniques for achieving parallel 
execution was discussed. Finally, the chapter examined techniques for 
estimating the performance benefits of using proper multi-threading 
techniques. The key points to keep in mind are: 

 Concurrency refers to the notion of multiple threads in progress 
at the same time. This is often achieved on sequential processors 
through interleaving. 

 Parallelism refers to the concept of multiple threads executing 
simultaneously.  

 Modern software applications often consist of multiple processes 
or threads that can be executed in parallel. 

 Most modern computing platforms are multiple instruction, 
multiple data (MIMD) machines. These machines allow 
programmers to process multiple instruction and data streams 
simultaneously.  

 In practice, Amdahl’s Law does not accurately reflect the benefit 
of increasing the number of processor cores on a given platform. 
Linear speedup is achievable by expanding the problem size with 
the number of processor cores. 



 

 


