
COMMUNICATIONS OF THE ACM September  2007/Vol. 50, No. 9 75

“The first law of massive parallelism is the
foundation for massive marketing that sup-
ports massive budgets that supports the
search for massive parallelism,” Gordon
Bell, 1992 [2]. 

For many years parallel computers have
been used by an exclusive scientific niche.
Only rich universities and research institu-
tions backed by government budgets or by
multibillion-dollar corporations could
afford state-of-the-art parallel machines.
Multiprocessor machines are very expensive
and demand highly specialized expertise in
systems administration and programming
skills. 

Commodity workstations first appeared
in the 1990s. New computer networking
technologies allowed the harnessing of tens,
and later hundreds, of them together to
form clusters of workstations. The “do-it-

yourself” Beowulf clusters represented great
progress (www.beowulf.org), and many
more colleges and universities established
parallel computing labs. Beowulf clusters are
attractive because they are cost-effective,
easy to construct, and scalable. They are
built from relatively inexpensive, widely
available components; most systems admin-
istrators have the skills necessary to install
and support clusters. If the processing power
requirement increases, the performance and
size of a Beowulf cluster is easily scaled up by
adding more computer nodes. Beowulf clus-
ters represent the fastest-growing choice for
building clusters for high-performance com-
puting and networking. As of September
2006, 361 systems (72%) were categorized
as clusters in the list of TOP 500 supercom-
puters (www.top500.org). 

Unfortunately, this achievement did not

PARALLEL COMPUTING 
ON ANY DESKTOP
lBy Ami Marowka 

illustration by Robert Saunders

Parallelization lets applications exploit the 
high throughput of new multicore processors, 
and the OpenMP parallel programming model helps 
developers create multithreaded applications. 



76 September  2007/Vol. 50, No. 9 COMMUNICATIONS OF THE ACM

increase the adoption of parallel
computing. Beowulf clusters and
supercomputers assembled from
off-the-shelf commodity proces-
sors are still expensive, compli-
cated to manage, difficult to
program, and require specialized
knowledge and skills. The batch
processing involved preserves
mainframe methods rather than
making them more interactive
and user friendly. 

The computing industry has
been ready for the parallel com-
puting era for more than a decade.
Most small-to-mid-size organiza-
tions use multiprocessor servers;
commercial databases (such as
Oracle and Microsoft SQL
servers) support parallelism;
Linux and Microsoft Windows
Server System operating systems
are multithreaded; and programming languages (such
as Java) support multithreaded programming. How-
ever, the massive breakthrough of parallel computing
many have been waiting for has still not occurred.
Two things were missing until 2005: low-cost parallel
computers and simple, easy-to-use parallel program-
ming environments. However, they are now available
and will change the way developers design and build
software applications. 

Two complementary technologies bring parallel
computing to the desktop. On the hardware side is
the multicore processor for desktop computers; on
the software side is the integration of the OpenMP
parallel programming model into Microsoft Visual
C11 2005. These technologies promise massive
exposure to parallel computing that nobody can
ignore; a technology shift is unavoidable. 

MULTICORE PROCESSORS

Dual-core processors first appeared on the market in
2001 [3]. Chip makers Sun Microsystems and IBM
were first; Sun introduced the Microprocessor Archi-
tecture for Java Computing, and IBM introduced the
POWER4 dual-core processor. Like their predeces-
sors, these processors were expensive and optimized
for special-purpose computing-intensive tasks run-
ning on high-end servers. 

The greatest change in processor architecture came
with the dual-core processors that AMD and Intel
introduced in 2005. Both were designed for desktop
computers and caused a dramatic drop in the price of
desktop computers and laptops, as well as of multicore

processors. A desktop computer
with a dual-core processor can
today be bought for less than
$500, a price affordable by stu-
dents and computer science
departments alike. Dual-core
processors are only the beginning
of the multicore-processor era.
Chip makers are working on the
next generation of multicore
processors that will contain four,
eight, and 16 cores on a single die
for both desktop computers and
laptops. The primary consequence
is that applications will increas-
ingly need to be parallelized to
fully exploit processor throughput
gains now becoming available. 

Unfortunately, writing parallel code is more com-
plex than writing serial code [8]. This is where the
OpenMP programming model enters the parallel
computing picture. OpenMP helps developers create
multithreaded applications more easily while retain-
ing the look and feel of serial programming. 

OPENMP PROGRAMMING MODEL

Multithreaded programming breaks an application
into subtasks, or “threads,” that run concurrently
and independently. To take advantage of multicore
processors, applications must be redesigned for the
processor to be able to run them as multiple threads. 

OpenMP simplifies the complex task of code par-
allelization [6], allowing even beginners to move
gradually from serial programming styles to parallel
programming. OpenMP extends serial code by using
compiler directives. A programmer familiar with a
language (such as C/C11) needs to learn only a
small set of directives. Adding them does not change
the logical behavior of the serial code; it tells the com-
piler only which piece of code to parallelize and how
to do it; the compiler handles the entire multi-
threaded task. 

OpenMP uses the fork-join model of parallel exe-
cution (see Figure 1). An OpenMP program begins
with a single thread of execution, or “master thread,”
which spawns teams of threads in response to
OpenMP directives that perform work in parallel.
Parallelism is thus added incrementally, with the ser-
ial program evolving into a parallel program.
OpenMP directives are inserted at key locations in
the source code. These directives take the form of
comments in Fortran or C/C11. The compiler
interprets the directives and creates the necessary code
to parallelize the indicated regions. The parallel

Marowka fig 1 (9/07) - 14 1/2 picas

Start

Master thread

Parallel
region

Parallel
region

Join

Fork

Stop

Figure 1. Fork-join 
programming model 

of OpenMP. 



region is the basic construct that creates a team of
threads and initiates parallel execution. 

Most OpenMP directives apply to structured
blocks, or blocks of code with one entry point at the
top and one exit point at the bottom. The number of
threads created when entering parallel regions is con-
trolled by an environment variable or by a function call
from within the program.
It is possible to vary the
number of threads created
in subsequent parallel
regions. Each thread exe-
cutes the block of code
enclosed by the parallel
region. Moreover, from
within a parallel region,
nested parallel regions can
exist in which each thread
of the original parallel
region becomes the master
of its own thread team (the
broken arrows in Figure 1).

PI PROGRAM

The parallel program described in the following
paragraphs computes an approximation of p using
numerical integration to calculate the area under the
curve 4/(11x2) between 0 and 1 (see Figure 2). The
interval [0,1] is divided into num_subintervals subin-
tervals of width 1/num_subintervals. For each of these
subintervals, the algorithm computes the area of a rec-
tangle with height such that the curve 4/(11x2)
intersects the top of the rectangle at its midpoint. The
sum of the areas of the num_subintervals rectangles
approximates the area under the curve. Increasing
num_subintervals reduces the difference between the
sum of the rectangle’s area and the area under the
curve. 

Figure 2 is an OpenMP program for computing p.
The compiler directive inserted into the serial pro-
gram in line 8 contains all the information needed for
the compiler to parallelize the program; #pragma omp
is the directive’s sentinel. The parallel keyword defines
a parallel region (lines 9–12) that is to be executed by
NUM_THREADS threads in parallel.
NUM_THREADS is defined in line 3, and the
omp_set_num_threads function sets the number of
threads to use for subsequent parallel regions in line 7.

There is an implied barrier at the end of a parallel
region; only the master thread of the team continues
execution at the end of a parallel region. 

The for keyword identifies an iterative work-sharing
construct that specifies the iterations of the associated
loop to be executed in parallel. The iterations of the for
loop are distributed across the threads in a round-robin

fashion according to the
order of the thread num-
ber. The private(x) clause
declares the variable x to be
private to each thread in
the team. A new object
with automatic storage
duration is allocated for
the construct; this alloca-
tion occurs once for each
thread in the team. 

The reduction (1:
area) clause performs a
reduction on the scalar

variable area with the operator 1. A private copy of
each variable area is created, one for each thread, as if
the private clause had been used. At the end of the
region for which the reduction clause is specified, the
original object is updated to reflect the result of com-
bining its original value with the final value of each of
the private copies using the 1 operator. The reduc-
tion operator 1 is associative, and the compiler may
freely re-associate the computation of the final value.
The value of the original object becomes indetermi-
nate when the first thread reaches the containing
clause, remaining indeterminate until the reduction
computation is complete. The computation is com-
plete at the end of the work-sharing construct. 

The pi program demonstrates only the basic con-
structs and principles of OpenMP, though OpenMP
is a large and powerful technology for parallelizing
applications. 

PROGRAMMABILITY AND PERFORMANCE

The example involving the pi program shows that
with OpenMP, the programmer has little to do when
parallelizing serial code. In this case, only two lines
are added to the source code. However, the pro-
grammer has much to understand, including: the
relationship between the logical threads and the
underlying physical processors and cores; how

COMMUNICATIONS OF THE ACM September  2007/Vol. 50, No. 9 77

Marowka fig 2 (9/07)

Start

1. #include <omp.h>
2.    float num_subintervals = 10000; float subinterval;  
3.    #define NUM_THREADS 5 
4.    void main ()  
5.    {int i; float x, pi, area = 0.0;  
6.      subinterval = 1.0 / num_subintervls;  
7.      omp_set_num_threads (NUM_THREADS) 
8.      #pragma omp parallel for reduction(+:area) private(x) 
9.            for (i=1; i<= num_subintervals; i++) {  
10.                x = (i-0.5)*subinterval;  
11. area = area + 4.0 / (1.0+x*x);  
12.            }  
13.            pi = subinterval * area;  
14.     }    

P

Join

Fork

Stop

Figure 2. OpenMP program to
compute p.

TO TAKE ADVANTAGE OF MULTICORE PROCESSORS, applications must be
redesigned for the processor to be able to run them as multiple threads. 



threads communicate and synchronize; how to mea-
sure performance in a parallel environment; and the
sources of load unbalancing. The programmer must
check for dependencies, deadlocks, conflicts, race
conditions, and other issues related to parallel pro-
gramming. Parallel programming is no doubt much
more tedious and error-prone than serial program-
ming [9]. 

The fork-join execution model for OpenMP is
simple and useful for solving a variety of problems in
large array-based applications. However, many classes
of problems demand other types of programming
models not currently supported by the OpenMP
standard [7]. For example, OpenMP is a shared-data
programming model, while many high-performance
applications must be run on distributed-shared mem-
ory machines and Beowulf clusters. This requirement
demands facilities for data placement among proces-
sors and threads to achieve data locality absent from
the standard. Solutions involve using vendor-specific
extensions or learning and implementing sophisti-
cated techniques [4]. 

Likewise, in its current form, OpenMP does not
adequately address task-graph parallelism computing
[5]. A variety of applications induce task-graph paral-
lelism with coarse-grain granularity. Task-graph paral-
lelism occurs when independent program parts are
executed on different cores based on precedence rela-
tionships among the threads. These applications must
be exploited to achieve the best possible performance
on multicore processors. 

The extra development effort and code complexity
of parallel programming begs the question: Is it worth
the trouble? The good news is that for a variety of
applications, it is, because parallelism allows full
exploitation of the gains in multicore-processor
throughput. Recent benchmark results for multicore-
based platforms using OpenMP are very encouraging.
For example, the Portland Group produced a version
of LS-DYNA compiled for an AMD Opteron proces-
sor-based dual-core system using the Portland
Group’s OpenMP compiler (www.pgroup.com/).
This version represents a speed improvement of over
30% compared to the previous best single-chip per-
formance reported. LS-DYNA is an explicit, general-
purpose multi-physics simulation software package
used to model a range of complex real-world prob-
lems (such as crash analysis and metal forming). 

More evidence of the scalability potential of dual-
core processors has been demonstrated using SPEC
OMPM2001 on IBM platforms (www.spec.org/
omp/). SPEC OMPM2001 is a standard benchmark
for OpenMP-based applications in both industry and
research; it uses a set of shared-memory, parallel-pro-

cessing applications to measure the performance of
the computing system’s processors, memory architec-
ture, operating system, and compiler. A total of 11
different application benchmarks—covering every-
thing from computational chemistry to finite-ele-
ment crash simulation to shallow water
modeling—are included in the benchmark suite.
Comparing the performance of IBM eServer Open-
Power 720 with two POWER5 dual processors run-
ning eight threads to a system with one POWER5
dual processor running four threads shows a perfor-
mance gain of 95%. 

CONCLUSION

Parallelism represents the next turning point in how
software engineers write software. Today, as general-
purpose desktop parallel machines are widely avail-
able for the first time, new opportunities are
available for many more researchers to generate new
parallel concepts and designs worldwide. Parallel
computing can even be made available to students in
high school and college, small software houses, and
small-business start-ups. Many challenges must still
be addressed (such as practical parallel-computation
models, simpler parallel programming models, and
efficient parallel algorithms) [1]. Meanwhile, we
must wait and see whether the first law of massive
parallelism is ever proved.

REFERENCES
1. Asanovic, K. et al. The Landscape of Parallel Computing Research: A View

from Berkeley. Electrical Engineering and Computer Sciences, University
of California, Berkeley. Technical Report No. UCB/EECS-2006-183,
Dec. 18, 2006; www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-
2006-183.html. 

2. Bell, G. Massively parallel computers: Why not parallel computers for
the masses? In Proceedings of the Fourth Symposium on the Frontiers of
Massively Parallel Computers (McLean, VA, Oct. Oct. 19–21). IEEE
Press, Los Alamitos, CA, 1992, 292–297. 

3. Geer, D. Chip makers turn to multicore processors. IEEE Computer 38,
5 (May 2005), 11–13. 

4. Marowka, A., Liu, Z., and Chapman B. OpenMP-oriented applications
for distributed shared memory architectures. Concurrency & Computa-
tion: Practice & Experience 16, 4 (Apr. 2004), 371–384. 

5. Marowka, A. Extending OpenMP for task parallelism. Parallel Process-
ing Letters 13, 3 (Sept. 2003), 341–352. 

6. OpenMP Architecture Review Board. OpenMP Application Program
Interface, Version 2.5 (May 2005); www.openmp.org/. 

7. Skillcorn, D. and Talia, D. Models and languages for parallel computa-
tion. ACM Computing Surveys 30, 2 (June 1998), 123–169. 

8. Sutter, H. The free lunch is over: A fundamental turn toward concur-
rency in software. Dr. Dobb’s Journal 30, 3 (Mar. 2005), 292–210. 

9. Sutter, H. and Larus, J. Software and the concurrency revolution. ACM
Queue 3, 7 (Sept. 2005), 54–62. 

Ami Marowka (amimar2@yahoo.com) is an assistant professor 
in the Department of Software Engineering of Shenkar College of
Engineering and Design, Ramat-Gan, Israel. . 

© 2007 ACM 0001-0782/07/0900 $5.00 

c

78 September  2007/Vol. 50, No. 9 COMMUNICATIONS OF THE ACM


